

für Schwingungs-, Schall- und Schienenverkehrstechnik GmbH

engineers for vibration, noise and railway technology

Dipl.-Ing. Udo Lenz Sitz: Essen (HRB 23825) Ladenspelderstraße 61 45147 Essen

Tel. 0201 87445 0 Fax 0201 87445 45 E-Mail office@ibugmbh.com www.ibugmbh.com

Auftraggeber: Kölner Verkehrs-Betriebe AG

Scheidtweilerstraße 38

50933 Köln

Objekt: Hauptwerkstatt Weidenpesch

in Köln-Weidenpesch

Titel: Immissionstechnische Untersuchung

Teil 1

Beurteilung der Luftschallimmissionen in der

Nachbarschaft

Auftrag Nr.: S 02.1127.13/1

Datum: 11. Oktober 2013

Umfang: 24 Textseiten

51 Anlagen

I.B.U.

INHALT

1	AUFGABENSTELLUNG		S.	3
2	PLA	NUNTERLAGEN	S.	4
3	BEU	JRTEILUNGSVORSCHRIFTEN	S.	6
	3.1	TA Lärm	S.	6
	3.2	16. BImSchV	S.	8
4	EMI	SSIONSANSÄTZE	S.	10
	4.1	HW und Abstellhalle	S.	10
		4.1.1 Fahrgeräusche Stadtbahn	S.	10
		4.1.2 Pkw-Parkplätze	S.	12
		4.1.3 Fahrgeräusche Kfz auf dem Betriebsgelände	S.	13
		4.1.4 Weitere Schallquellen auf dem Gelände	S.	13
		4.1.5 Maximalpegel	S.	13
	4.2	Zulaufstrecke bis Anbindung an die Neusser Straße	S.	14
	4.3	Simonskaul / Mönchsgasse	S.	16
5	BEU	JRTEILUNG	S.	20
	5.1	HW und Abstellhalle	S.	20
		5.1.1 Immissionspegel	S.	20
		5.1.2 Maximalpegel	S.	20
		5.1.3 Prognoseunsicherheit σ	S.	21
	5.2	Zulaufstrecke bis Anbindung Neusser Straße	S.	21
	5.3	Simonskaul / Mönchsgasse	S.	22
6	ZUS	SAMMENFASSUNG	S.	22
7	ANL	ANLAGEN		23
Ω	ÄNIT	DEDLINGSINDEY	9	24

1 <u>AUFGABENSTELLUNG</u>

Die Kölner Verkehrs-Betriebe AG (KVB) plant die Abstellung von 64 Stadtbahnfahrzeugen (32 Doppeltraktionen / Züge) auf dem Gelände der heutigen Hauptwerkstatt (HW) Weidenpesch. Die Fahrzeuge werden in der Regel nach Betriebsende über Nacht (22:00 – 6:00 Uhr) in eine Abstellhalle gefahren und von dort aus bei Betriebsbeginn wieder in das Streckennetz der KVB eingespeist. Das genaue Betriebsprogramm richtet sich nach dem jeweiligen Fahrplanangebot. An die geplante Abstellhalle angeschlossen befindet sich eine Waschanlage, in der Fahrzeuge zur Nachtzeit gereinigt werden. Nachts erfolgt die Besandung der Wagen innerhalb der Halle.

Auf dem Gelände der Hauptwerkstatt finden zurzeit Wartungs-, Lackier- und Reparaturarbeiten innerhalb entsprechender Hallen statt. Weiterhin werden die Kassen der Fahrkartenautomaten vor Ort be- und entladen. Mehrere Arbeiten in der HW werden nur tagsüber durchgeführt, zwischen 20 und 4 Uhr sollen zukünftig außerdem Werkstattarbeiten in der HW28 stattfinden. Die Beurteilung wird anhand der Technischen Anleitung zum Schutz gegen Lärm (TA Lärm) vorgenommen. Dabei werden die von dem gesamten Betriebsgelände an der umliegenden Bebauung verursachten Luftschallimmissionen berücksichtigt. Falls erforderlich sind Schallschutzmaßnahmen aufzuzeigen, die die Einhaltung der Richtwerte nach TA Lärm an der betroffenen Anliegerbebauung gewährleisten.

Die Zu- und Abfahrten der Stadtbahnen werden zunächst über eine bereits vorhandene, sehr selten genutzte Trasse, die das Werkstattgelände mit dem HGK-Netz verbindet erfolgen. Kurz vor und nördlich der Straße Simonskaul wird die Trasse über einen neuzubauenden Streckenabschnitt an die KVB-Gleise der Neusser Straße und damit an das vorhandene Streckennetz angeschlossen. Die dadurch verursachten Schallimmissionen an der angrenzenden Bebauung sind anhand der 16. BImSchV zu berechnen und zu bewerten. Bei Überschreitung der zulässigen Grenzwerte sind entsprechende Schallschutzmaßnahmen zu beschreiben.

Aufgrund des Betriebes der neugeplanten Abstellhalle erhöht sich der Kfz-Verkehr auf den Straßen Simonskaul und Mönchsgasse östlich des Geländes, da das Fahrpersonal zusätzlich zu den Mitarbeitern der HW diese Straßen befahren werden. Die TALärm sieht vor, dass eine durch einen neugeplanten Betrieb verursachte Verkehrszunahme schalltechnisch nach 16. BlmSchV zu bewerten ist. Unter bestimmten Umständen sind auch hier entsprechende Maßnahmen zu beschreiben.

2 PLANUNTERLAGEN

Für die Bearbeitung wurden die folgenden Unterlagen herangezogen:

Flächennutzungsplan:

Weidenpesch Karte Gebietskaat_FNP free.pdf von Mai 2013

Lagepläne:

HW:

LP_AA_HW_trassiert_2013-08-26.dxf / pdf

Zulaufstrecke Neusser Straße:

LP_Zulauf süd_M_1000_mit Stempel.dxf LP_Zulauf süd_M_1000_2013-08-05.pdf

Zufahrt Simonskaul / Mönchsgasse:

LP_AA_HW-anschluss_simonskaul_2013-09-02.dxf / pdf

betriebsablauf.pdf

weitere Angaben der KVB über schalltechnisch relevante Vorgänge (Fahrthäufigkeit, Besandung, Parkplätze)

Messungen der Schallpegel von den Arbeitsvorgängen innerhalb der Werkshallen bzw. schalltechnische Vorbetrachtungen zur Abstellanlage durch I.B.U..

Abstellanlage und Hauptwerkstatt

Im ungünstigsten Fall werden nach 22 Uhr 32 Stadtbahnzüge von Norden (Neusser Straße) kommend auf dem HW-Gelände in einer Halle abgestellt und in den frühen Morgenstunden von dort aus wieder in das Schienennetz der KVB eingespeist. Die Erforderlichkeit einer Halle über der Abstellanlage wurde im Rahmen von Vorbetrachtungen nachgewiesen. Nach Süden hin ist die Abstellhalle geschlossen und es ist keine Ausfahrmöglichkeit vorgesehen. Die Fahrzeuge fahren morgens entsprechend den gleichen Weg Richtung Norden zur Neusser Straße wieder zurück.

16 Fahrzeuge werden nachts besandet und 8 in der Waschanlage gereinigt. Für die Besandung sind keine Rangierfahrten erforderlich. Die zu waschenden Fahrzeuge müssen nachts aus der Abstellanlage in die Waschhalle rangiert werden, dies geschieht nicht während der Ein- und Ausfahrzeiten und damit nicht in der lautstärksten Nachtstunde.

Das ermittelte bewertete Schalldämmmaß der Wand- und Dachbauteile beträgt jeweils $R'_w = 20 \text{ dB}$. Da die Hallentore während der Ein- und Ausfahrt geöffnet sind ($R'_w = 0 \text{ dB}$) wird für diese kein Mindestwert für das bewertete Schalldämmmaß vorgegeben.

Die östlich der Halle gelegenen Abstellgleise der HW werden an die nördliche Gleisharfe angebunden, tagsüber sind dort zwei Fahrten vorgesehen, zusätzlich ist von ca. 10 weiteren Betriebsfahrten auf dem Gelände zur Tagzeit auszugehen. Nachts finden außerhalb der Halle keine Fahrten statt.

Die heute schon vorhandenen Parkplätze werden weiterhin von den Mitarbeitern der HW tagsüber genutzt. Für das Fahrpersonal sind 48 Parkplätze östlich der Halle neu geplant.

Die Werkstattarbeiten werden tagsüber zwischen 6:00 und 22:00 Uhr sowie in HW28 bis 4:00 Uhr stattfinden.

Die bauliche Situation sowie die Darstellung der Schallquellen auf dem Betriebsgelände sind den Lageplänen der Anlagen-Nr. 1.1.1.1 – 1.1.1.4 zu entnehmen. Das Gelände ist durch eine ca. 2,50 m hohe Mauer abgegrenzt, im Bereich der Stettiner Str. 2 wurde auf dem Nachbarschaftsgrundstück eine zusätzliche ca. 10 m lange und ca. 3,70 m hohe Wand erstellt. Ebenfalls dargestellt ist die im unmittelbaren Einflussbereich der Anlage liegende Wohnbebauung mit den entsprechenden Aufpunkten an den Häusern.

Zulaufstrecke mit Anbindung an die Neusser Straße

Für die Anbindung der Abstellung an die Neusser Straße ist die teilweise Nutzung einer anschließenden Gleisanlage vorgesehen. Im Bereich der Straße Simonskaul (Verlauf nördlich des HW-Geländes) biegt eine geplante Trasse nach Osten hin Richtung Neusser Straße ab und fädelt dort über eine Rampe in das Schienennetz der KVB ein. Im Einflussbereich dieser Maßnahme liegen mehrere Anliegergebäude, für die die Immissionspegel zu ermitteln sind. Die Lageplansituation ist in den Anlagen-Nr. 3.1.1 – 3.1.4 gezeigt.

Zufahrt über Simonskaul und Mönchsgasse

Hier sind keine baulichen Änderungen geplant, dennoch ist nach TALärm der dem Betrieb zuzuordnende Verkehrslärm nach 16. BImSchV zu beurteilen. Der <u>Anlage-Nr. 4.1</u> ist ein Lageplan mit dem Straßenverlauf und der Anliegerbebauung zu entnehmen.

3 <u>BEURTEILUNGSVORSCHRIFTEN</u>

3.1 <u>TA LÄRM</u>

Eine anlagenbezogene Lärmbelastung in der Nachbarschaft ist nach der 6. Allgemeinen Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (BImSchG)

Technische Anleitung zum Schutz gegen Lärm (TA Lärm) vom 26. August 1998,

anhand eines Beurteilungspegels L_r getrennt für den Tag und die Nacht zu bewerten.

Der Beurteilungspegel setzt das Einwirken vorhandener, über die Zeit veränderlicher Geräusche, dem Einwirken eines gemittelten, über einen Bezugszeitraum T_r konstanten Geräusches mit dem Pegel L_r gleich.

Die TA Lärm nennt die Bezugszeiträume T_r und gebietsabhängige Immissionsrichtwerte (IRW). Die Bebauung um das Gelände der HW Weidenpesch ist südlich einem reinen Wohngebiet (WR) und östlich einem allgemeinen Wohngebiet (WA) zuzuordnen (s. Anlage-Nr. 1.2). Die Angrenzung eines reinen oder allgemeinen Wohngebietes an ein Gebiet mit gewerblicher Nutzung ist schalltechnisch stets kritisch. Die TALärm bietet die Möglichkeit, für eine solche Situation (Gemengelage) die Richtwerte für die Wohngebiete auf geeignete Zwischenwerte anzuheben. Dabei soll der Richtwert für Misch- und Kerngebiete nicht überschritten, allerdings auch die konkrete Schutzbedürftigkeit beachtet werden. Entsprechend werden nach gemeinsamer Abwägung für das reine Wohngebiet die Richtwerte für allgemeine Wohngebiete angesetzt und die Richtwerte für das vorhandene allgemeine Wohngebiet um 3 dB(A) erhöht.

An den betroffenen Gebäuden sind dann die folgenden Richtwerte einzuhalten, der Nachtrichtwert gilt dabei für die lautstärkste Stunde.

Gebietskategorie	IRW		
	Tag	lautstärkste Nachtstunde	
WR	55	40	
WA	58	43	

Tabelle 1: Gebietsabhängige Immissionsrichtwerte

Eine erhöhte Störwirkung durch Ton-, Informations- oder Impulshaltigkeit ist ggf. durch Zuschläge bei der Prognoseberechnung zu berücksichtigen.

Kurzfristige Geräuschspitzen dürfen die Richtwerte am Tage um nicht mehr als 30 dB und in der Nacht um nicht mehr als 20 dB überschreiten.

In Wohngebieten ist die Störwirkung von Geräuschen während Tageszeiten mit erhöhter Empfindlichkeit – an Werktagen von 6 bis 7 Uhr und von 20 bis 22 Uhr und an Sonn- und Feiertagen von 6 bis 9 Uhr, zwischen 13 und 15 Uhr sowie von 20 bis 22 Uhr – durch einen Pegelaufschlag (sog. Ruhezeitenzuschlag) von 6 dB zu berücksichtigen.

Geräusche des anlagenbezogenen An- und Abfahrtverkehrs auf öffentlichen Verkehrsflächen in Misch- und Wohngebieten sind im Umkreis von 500 m zu berücksichtigen und nach der Verkehrslärmschutzverordnung 16. BlmSchV zu beurteilen.

Geräusche im tiefen Frequenzbereich unter 90 Hz werden hier nicht erwartet.

Da das KVB-Gelände alleiniger Verursacher von Luftschallimmissionen aus Gewerbe bezogen auf die zu betrachtenden Wohnhäuser ist, kann die gesamte Anlage die o. g. Richtwerte ausschöpfen.

3.2 <u>16. BIMSCHV</u>

Seit dem 12.06.1990 ist die

 Sechzehnte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verkehrslärmschutzverordnung - 16. BImSchV)

vom Bundestag und Bundesrat verabschiedet. Im Zusammenhang mit dem Bundes-Immissionsschutzgesetz hat die 16. BImSchV Gesetzeskraft.

Unter § 1, Abs. 1 (Anwendungsbereich) ist festgelegt, dass die 16. BImSchV nur für den Bau oder die wesentliche Änderung von öffentlichen Straßen und Schienenwegen gilt. Dabei setzt die wesentliche Änderung einen Neubau oder erheblichen baulichen Eingriff in den Verkehrsweg voraus.

Der § 1 Abs. 2 definiert den Begriff "wesentliche Änderung" wie folgt:

"Die Änderung ist wesentlich, wenn

- eine Straße um einen oder mehrere durchgehende Fahrstreifen für den Kraftfahrzeugverkehr oder ein Schienenweg um ein oder mehrere durchgehende Gleise baulich erweitert wird oder
- durch einen erheblichen baulichen Eingriff der Beurteilungspegel des von dem zu ändernden Verkehrsweg ausgehenden Verkehrslärms um mindestens 3 Dezibel (A) oder auf mindestens 70 Dezibel (A) am Tage oder mindestens 60 Dezibel (A) in der Nacht erhöht wird.

Eine Änderung ist auch wesentlich, wenn der Beurteilungspegel des von dem zu ändernden Verkehrsweg ausgehenden Verkehrslärms von mindestens 70 Dezibel (A) am Tage oder 60 Dezibel (A) in der Nacht durch einen erheblichen baulichen Eingriff erhöht wird; dies gilt nicht in Gewerbegebieten."

Für den Bau oder die wesentlichen Änderung eines Straßen- oder Schienenweges nennt die 16. BImSchV Immissionsgrenzwerte (IGW), die in der folgenden Tabelle wiedergegeben werden:

	Immissions	grenzwerte
Immissionsgebiete	[dB	(A)]
	Tag	Nacht
Krankenhäuser, Schulen, Kurhei-	57	47
me und Altenheime		
reine und allgemeine Wohngebie-	59	49
te und Kleinsiedlungsgebiete		
Kerngebiete, Dorfgebiete und	64	54
Mischgebiete		
Gewerbegebiete und Industriege-	69	59
biete		

Tabelle 2: Immissionsgrenzwerte nach § 2 der 16. BlmSchV

Die Beurteilungszeiträume Tag bzw. Nacht sind mit 06:00 bis 22:00 Uhr (16 Std.) bzw. 22:00 bis 06:00 Uhr (8 Std.) festgelegt.

Für die 16. BlmSchV liegen hier zwei Anwendungsfälle vor:

Zulaufstrecke:

Bei der geplanten Anbindung der Abstellanlage auf dem HW-Gelände an die Neusser Straße soll eine z. Zt. sehr selten genutzte Gleistrasse sowie eine Neubautrasse genutzt werden. Die Immissionen der zukünftig vorbeifahrenden Stadtbahnfahrzeuge an der anliegenden Bebauung werden entsprechend nach den Vorschriften der 16. BImSchV berechnet und anhand der zulässigen Grenzwerte beurteilt. Die Anliegerbebauung Simonskaul ist einem Mischgebiet und die Gebäude Neusser Straße einem Wohngebiet zuzuordnen, es gelten die entsprechenden Grenzwerte.

Kfz-Fahrten Simonskaul / Mönchsgasse:

In den beiden Straßen ist weder ein Neubau noch ein erheblicher baulicher Eingriff vorgesehen. Nach TALärm ist dennoch der dem Betrieb zuzuschreibende Verkehrslärm daraufhin zu untersuchen, ob durch ihn an der Anliegerbebauung Änderungen der Immissionssituation zu erwarten sind. Nach TALärm sollen durch Maßnahmen organisatorischer Art Geräusche soweit wie möglich gemindert werden, wenn

- sie den Beurteilungspegel der Verkehrsgeräusche für den Tag oder die Nacht rechnerisch um mindestens 3 dB(A) erhöhen
- keine Vermischung mit dem übrigen Verkehr erfolgt ist

und

die Immissionsgrenzwerte erstmals oder weitergehend überschritten werden.

Die zusätzlichen Kfz-Fahrten durch das Fahrpersonal auf den Straßen Simonskaul und Mönchsgasse werden auf ihre entsprechenden schalltechnischen Auswirkungen hin untersucht.

4 <u>EMISSIONSANSÄTZE</u>

4.1 HW und Abstellhalle

Grundsätzlich lassen sich verschiedene Geräuschquellen/-bereiche (Kurzbezeichnung in Klammern) auf dem Betriebsgelände unterscheiden:

- Geräusche aus Kfz- und Schienenverkehr, wie Fahrgeräusche Pkw (L),
 Fahrgeräusche Schienenverkehr (Sch)
- Pkw-Stellplätze für Mitarbeiter (P)
- Geräusche aus dem Halleninneren, über die Gebäudeaußenflächen abgestrahlt
- Geräusche von Klima-/Lüftungsaggregaten im Außenbereich (K)

Die in die Emissionsberechnung eingehenden Parameter und Emissionsansätze werden in den nächsten Abschnitten beschrieben.

Bei Punkt- und Flächenquellen ist der entfernungsunabhängige Schallleistungspegel L_W die Emissionskenngröße und bei Parkplätzen, Straßen- und Schienenwegen der Mittelungspegel L_{mE} in 25 m Abstand zur Quelle, der in Schallleistungspegel umzurechnen ist.

4.1.1 <u>Fahrgeräusche Stadtbahn</u>

Die geplante Abstellanlage Weidenpesch soll über eine Anbindung von Norden im Verlauf einer selten genutzten Trasse angefahren werden. Die Fahrzeuge fädeln an der Neusser Straße in den Linienverkehr ein bzw. aus. Als ungünstigster Fall wird angenommen, dass alle 32 Züge innerhalb einer Nachtstunde einfahren und in der Abstellhalle abgestellt werden. Die Stadtbahnen fahren über die eingehauste nördliche Gleisharfe in die Halle ein und vertei-

len sich auf die 16 Abstellgleise innerhalb der Halle. Die Fahrzeugbewegungen der Ausfahrt in den frühen Morgenstunden entsprechen denen der Einfahrt, sodass die Betrachtung des Einfahrvorganges ausreicht um die lautstärkste Nachtstunde zu bewerten.

Tagsüber ist von ca. zehn Betriebsfahrten und zwei zusätzlichen Fahrten auf dem Gelände auszugehen.

Der Emissionspegel L_{m, E} von Stadtbahnvorbeifahrten ergibt sich nach der "Richtlinie zur Berechnung der Schallimmissionen von Schienenwegen – Schall 03, 1990" in Abhängigkeit von der Anzahl der Vorbeifahrten, des Fahrzeugtyps, der Fahrzeuglänge, der Geschwindigkeit, des Scheibenbremsanteils und der Oberbauform.

Als maximal zulässige Geschwindigkeit werden 15 km/h ($D_{15 \text{ km/h}}$ = 20 log (0.01 x 15) = - 16.5 dB) angenommen, die Zuglänge beträgt I = 58 m (D_{58m} =10 log (0.01 x 58) = - 2,4 dB) (Doppeltraktion).

Der Fahrbahnparameter ist nach Schall 03 mit D_{Fb} = 5 dB für die Feste Fahrbahn anzusetzen. Der Fahrzeugtyp geht mit einem Zuschlag von D_{Fz} = 3 dB in die Immissionsrechnung ein, der Scheibenbremsanteil beträgt 100 %.

Da innerhalb des Geländes und der Abstellhalle Kurven mit Radien R = 300 – 500 m und R < 300 m befahren werden, sind Zuschläge aufgrund von möglicherweise auftretenden Kurvenquietschgeräuschen mit 3 dB(A) bzw. 8 dB(A) (16. BlmSchV), 6 dB(A) für Tonhaltigkeit des Geräusches (TALärm) sowie 3 dB(A) aufgrund seiner Impulshaltigkeit (TALärm) zu berücksichtigen.

Die Weichenüberfahrten der Stadtbahnen erzeugen impulshaltige Geräusche, die in Abhängigkeit von der Geschwindigkeit mehr oder weniger deutlich hervortreten. Wegen der geringen Geschwindigkeit wird eine Beaufschlagung von 3 dB für ausreichend erachtet (TALärm).

Für die Streckenabschnitte ergeben sich aus den beschriebenen Einflussgrößen mit

$$L_{m,E;1Fz/h} = 51 + D_{I} + D_{v} + D_{Fb} + D_{Fz} + D_{B} + D_{Ra} + D_{Br}$$

$$\uparrow Grundwert nach Schall03$$

und

$$L_{m,E} = L_{m,E,1Fz/h} + 10 \log(n)$$

n: Anzahl der Fahrten / h pro Richtung

die entsprechenden Emissionspegel.

Aus diesen lassen sich mit

 $L'_{w} = L_{mE} + 19.2 \text{ dB(A)} + 5 \text{ dB(A)}$ (Schienenbonus wird rückgängig gemacht TALärm) und ggf. den Zuschlägen für Impuls- bzw. Tonhaltigkeit die entsprechenden längenbezogenen Schallleistungspegel ermitteln, die für eine Berechnung nach TALärm erforderlich sind.

Um die Emissionspegel zu ermitteln, die von der Abstellhalle abgestrahlt werden, ist aus den Schallleistungspegeln der Gleise innerhalb der Halle der entsprechende Innenpegel L_I [dB(A)] zu ermitteln. Dieser ergibt sich nach VDI 2571 aus dem Gesamtschallleistungspegel der Quellen in der Halle mit der folgenden Formel:

$$L_1 \approx L_{w,ges} + 14 + 10 \cdot log \left(\frac{T}{V}\right) dB(A)$$

L_{w,ges}: Gesamtschallleistungspegel der einzelnen Quellen innerhalb der Halle [dB(A)]

T: Nachhallzeit [s], hier: 2 s

V: Volumen der Halle [m³]

Der Innenpegel wird dann über die Außenbauteile der Halle an die Umgebung abgestrahlt, dabei bestimmt das bewertete Schalldämmmaß R'_w [dB] der Bauteile die abgestrahlte Pegelhöhe. Das bewertete Schalldämmmaß beschreibt die Differenz zwischen dem Innenpegel und dem durch das jeweilige Bauteil gedämmten Außenpegel. Das bewertete Schalldämmmaß R'_w wird für die Wände und das Dach mit R'_w = 20 dB festgelegt.

Die verwendeten Emissions-, Schallleistungs- und Innenpegel sind in den <u>Anlagen-Nr. 1.3.1</u> + 1.3.2 zusammengestellt.

4.1.2 Pkw-Parkplätze

Der Emissionspegel L_{mE} eines Parkplatzes (P) nach der "Parkplatzlärmstudie des Bayerischen Landesamt für Umweltschutz, 2007" ist abhängig von der Anzahl der Stellplätze und Bewegungen pro Stellplatz und Stunde und dem Parkplatztyp.

Die in den Lageplänen gezeigten Flächen P1 (auch Motorradparkplatz) bis P5 sind It. Planunterlagen vorhandene Stellflächen für die KVB-Mitarbeiter mit insgesamt 156 Parkplätzen. Es wird davon ausgegangen, dass jeder dieser Parkplätze tagsüber zweimal (vier Ein- und Ausparkbewegungen) belegt wird (Schichtdienst)

Die neu geplanten Parkflächen P6 bis P9 mit 48 Stellplätzen sind für das Fahrpersonal vorgesehen, von denen 32 in der lautstärksten Nachtstunde einmal angefahren werden.

In <u>Anlage 1.3.2</u> sind die Rechenparameter und Schallleistungspegel der einzelnen Parkplätze ausgewiesen, dabei berücksichtigt der Taktmaximalzuschlag von 4 dB verstärkt Rangierund Einzelgeräusche wie z. B. Türenschlagen, Motorstarten etc.. Bei dem Motorradparkplatz wird zusätzlich ein Aufschlag von 3 dB(A) für die Parkplatzart angesetzt.

4.1.3 <u>Fahrgeräusche Kfz auf dem Betriebsgelände</u>

Fahrgeräusche auf der Betriebsfläche resultieren aus den Ein-/Ausfahrten zum Schichtwechsel. Aus den Eingangsdaten zur Parkplatzbelegung lässt sich die Streckenbelegung (L) ableiten (Anlage-Nr. 1.3.3). Als Fahrzeuggeschwindigkeit wird von v = 30 km/h ausgegangen, für die Straßenoberfläche wird $D_{StrO} = 0$ gewählt und es ist kein Lkw-Anteil p zu berücksichtigen.

Es wird davon ausgegangen, dass zwischen Geländeeinfahrt und den Lagern noch maximal 3 Lkw-Fahrten für Lieferverkehre am Tage zu erwarten sind. Sie fahren ebenfalls mit v = 30 km/h und der Lkw-Anteil beträgt p = 100 %.

Aus den mit diesen Parametern ermittelten Emissionspegeln nach 16. BlmSchV ergeben sich mit $L'_w = L_{mE} + 19.2$ dB(A) die Schallleistungspegel der einzelnen Fahrbahnabschnitte. Die Pegel sind ebenfalls in <u>Anlage-Nr. 1.3.3</u> zusammengefasst und können den Fahrbahnabschnitten der Lagepläne der <u>Anlagen-Nr.1.1.1.1 - 1.1.1.4</u> zugeordnet werden.

4.1.4 Weitere Schallquellen auf dem Gelände

Die Werte für die folgenden Quellen:

Klima- und lufttechnische Aggregate im Außenbereich

Schallabstrahlende Außenbauteile

Halleninnenpegel

Schalldämmmaße

sind in den Tabellen der <u>Anlagen-Nr. 1.4</u> zusammengestellt, sie basieren auf früheren Betrachtungen und Messungen der IBU.

4.1.5 <u>Maximalpegel</u>

Die lautesten Geräuschspitzen werden vermutlich durch das Kurvenquietschen hervorgerufen. Dafür wird ein Maximalpegel von

 $L_{W. max} \sim 120 dB(A)$

festgelegt und an den in dem Lageplan der <u>Anlage-Nr. 2.1</u> gekennzeichneten Bögen angesetzt. Diese Radien werden nur tagsüber befahren, nächtliche Fahrten im Außenbereich sind nicht vorgesehen.

Es wird davon ausgegangen, dass aus der Halle keine Geräuschspitzen wahrzunehmen sein werden, sodass hier der bereits errechnete Immissionspegel zur Bewertung herangezogen wird. Dieser liegt schon unterhalb der zulässigen Richtwerte, sodass keine kritischen Maximalpegel aus der Halle zu erwarten sind.

Sämtliche Berechnungen wurden mit dem Programm CadnaA Version 4.3.143 richtlinienkonform durchgeführt. Bei der Schallausbreitung wurden die folgenden Annahmen vorausgesetzt:

Für die Ausbreitungsrechnung gilt:

- Bodenabsorption G = 0.6 (G=0: reflektieren, G=1: absorbierend)
- Mitwindlage (ungünstigste Annahme)
- Temperatur: 10°C, Luftfeuchte: 70 %
- Abstandssituation gemäß den Planunterlagen
- Berechnung der 2. Reflexion
- die Immissionspunkthöhen betragen standardmäßig 3,5 m für das Erdgeschoss (EG) zzgl. 2,8 m je Obergeschoss (OG)

4.2 Zulaufstrecke bis Anbindung an die Neusser Straße

Die Anlage 2 der 16. BImSchV enthält die Verfahren zur Berechnung der Beurteilungspegel von Schienenwegen. Die Beurteilungspegel der Tag- und Nachtzeit werden aus den der Planung zu Grunde liegenden Daten ermittelt. Die Rechenverfahren gelten für lange gerade Gleise, die auf dem für die Immissionen maßgebenden Streckenabschnitt konstante Emissionen und unveränderte Ausbreitungsbedingungen aufweisen. Sind diese Bedingungen nicht erfüllt verweist die 16. BImSchV auf die Richtlinie

SCHALL 03 zur Berechnung der Schallimmissionen von Schienenwegen, 1990

Die Immissionsberechnung erfolgt dann für Teilstücke, für die die Einflussparameter jeweils konstant sind. Die folgend aufgelisteten Einflussgrößen gehen in die Rechenverfahren ein.

Maßgebende Parameter zur In	nmissionsberechnung
Emissionspegel Schiene	Schallausbreitung
 Fahrzeugtyp Fahrzeuglänge Bremsbauart Anzahl der Fahrzeuge Fahrzeuggeschwindigkeit Fahrbahnart 	- Abstandssituation - Reflexion - Abschirmung

Tabelle 3: Parameter zur Immissionsberechnung nach 16. BImSchV bzw. SCHALL 03

Die endgültige Berechnung der Schallimmissionen erfolgt unter Verwendung des Programms Cadna/A, V 4.3.143, Datakustik, nach den **Teilstückverfahren** gemäß SCHALL.

Für die Ausbreitungsrechnung gilt:

- Abstandssituation gemäß den Planunterlagen
- Berechnung der 1. Reflexion
- die Immissionspunkthöhen betragen standardmäßig 3,5 m für das Erdgeschoss (EG) zzgl. 2,8 m je Obergeschoss (OG)

Die Stadtbahnfahrzeuge, die die Abstellanlage Weidenpesch anfahren bzw. diese verlassen befahren eine separate Gleistrasse und fädeln nördlich der HW im Bereich der Neusser Straße in das Streckennetz der KVB ein.

Es wird davon ausgegangen, dass über diesen Gleisabschnitt tagsüber 10 und nachts 32 Züge mit einer Länge I_{Fz} = 58 m (Doppeltraktion) pro Richtung fahren werden.

D_{1.58m} =10 log $(0.01 \times 58) = -2.4 \text{ dB}$.

Die Streckengeschwindigkeit beträgt v = 50 km/h, in den Einfädelbereichen in die Neusser Straße v = 30 km/h.

- **D**_{v,50 km/h} = 20 log (0.01×50) = **6.0 dB**
- **D**_{v,30 km/h} = 20 log (0.01×30) = **10.5 dB**

Die Stadtbahnen fahren auf einem separaten Gleiskörper im Schotterbett $D_{Fb} = 2 \, dB(A)$, im Rampenbereich und der Anbindung an die Neusser Straße ist ein Rasengleis auf Betonplat-

temit $D_{Fb} = -2 dB(A)$ vorgesehen, lediglich die Fußgängerquerung und die Fahrbahn Neusser Straße ist als Feste Fahrbahn auszuführen $D_{Fb} = 5 dB(A)$.

Für die vorhandenen Radien R < 300 m ist ein Kurvenzuschlag D_{Ra} = 8 dB(A) anzusetzen. Der Fahrzeugtyp geht mit einem Zuschlag von D_{Fz} = 3 dB in die Immissionsrechnung ein, der Scheibenbremsenanteil beträgt 100 %.

Damit ergeben sich die folgenden Emissionspegel für die einzelnen Streckenabschnitte.

Der Emissionspegel für eine Stadtbahnfahrt / h ergibt sich dann zu:

$$L_{m,E;1Fz/h} = 51 + D_{I} + D_{v} + D_{Fb} + D_{Fz} + D_{B} + D_{Ra} + D_{Br}$$

$$\uparrow Grundwert nach Schall03$$

Unter Berücksichtigung der im Vorfeld getroffenen Annahmen können daraus die jeweiligen Emissionspegel der einzelnen Streckenabschnitte folgendermaßen berechnet werden:

$$L_{m,E} = L_{m,E,1Fz/h} + 10 \log(n)$$

n: Anzahl der Fahrten / h pro Richtung

 $n_{Taq} = 0.6$ Fahrten/h (10 Fahrten in 16 h)

 n_{Nacht} = 4 Fahrten/h (32 Fahrten in 8 h)

Damit ergeben sich die folgenden Emissionspegel:

Abschnitt L _{m,E} [o		dB(A)]	
	Tag	Nacht	
gerades Gleis, Schotterbett, v = 50 km/h	45,6	53,6	
R < 300 m, Schotterbett, v = 50 km/h	53,6	61,6	
R < 300 m, Feste Fahrbahn, v = 30 km/h	49,1	57,2	
gerades Gleis, Rasengleis, v = 50 km/h	41,6	49,6	
R < 300 m, Rasengleis, v = 50 km/h	49,6	57,6	

Tabelle 4: Emissionspegel Zulaufstrecke

4.3 <u>Simonskaul / Mönchsgasse</u>

Die Anlage 1 der 16. BImSchV enthält die Verfahren zur Berechnung der Beurteilungspegel von Straßen. Die Beurteilungspegel der Tag- und Nachtzeit werden aus den der Planung zu Grunde liegenden Daten ermittelt. Die Rechenverfahren gelten für lange gerade Straßen, die auf dem für die Immissionen maßgebenden Abschnitt konstante Emissionen und unverän-

derte Ausbreitungsbedingungen aufweisen. Sind diese Bedingungen nicht erfüllt verweist die 16. BImSchV auf die Richtlinie

RLS 90 für den Lärmschutz an Straßen, 1990

Die Immissionsberechnung erfolgt dann für Teilstücke, für die die Einflussparameter jeweils konstant sind. Die folgend aufgelisteten Einflussgrößen gehen in die Rechenverfahren ein.

Maßgebende Parameter zur Immissionsberechnung		
Emissionspegel	Schallausbreitung	
Straße		
- Anzahl der Fahrzeuge		
- Lkw-Anteil		
- zul. Geschwindigkeit	- Abstandssituation	
- Straßenoberfläche	- Reflexion	
- Steigung/Gefälle	- Abschirmung	
- lichtzeichengeregelte		
Kreuzungen/Einmündungen		

Tabelle 5: Parameter zur Immissionsberechnung nach 16. BImSchV bzw. RLS 90/SCHALL 03

Die endgültige Berechnung der Schallimmissionen erfolgt unter Verwendung des Programms Cadna/A, V 4.3.143, Datakustik, nach den **Teilstückverfahren** gemäß RLS 90.

Für die Ausbreitungsrechnung gilt:

- Abstandssituation gemäß den Planunterlagen
- Berechnung der 1. Reflexion
- die Immissionspunkthöhen betragen standardmäßig 3,5 m für das Erdgeschoss (EG) zzgl. 2,8 m je Obergeschoss (OG)

Der folgenden Tabelle sind die für 2015 hochgerechneten DTV-Werte (durchschnittlicher täglicher Verkehr) aus dem Jahre 2008 für die Straßen Simonskaul und Mönchsgasse zusammengestellt. Die Hochrechnung erfolgt nach Bild 1 – A der "Richtlinie für die Anlage von Straßen (RAS-Q)" von 1996. Aus diesen wird mit M_{Tag} = 0,06 DTV und M_{Nacht} = 0,011 DTV (für Gemeindestraßen nach RLS-90) der durchschnittliche tägliche Verkehr ermittelt (STR0).

Tagsüber fahren zukünftig zusätzlich 64 Pkw über die Zufahrtstraßen, dabei wird von einem Schichtwechsel ausgegangen, d.h. 32 Fahrer holen ihre Fahrzeuge nach Dienstende ab und 32 stellen ihre Wagen vor Dienstbeginn ab. Über den Tag verteilt (16 h) ergeben sich 4 Fahrten / h und bei einer gleichmäßigen Verteilung auf den Simonskaul und die Mönchsgasse, je Straße 2 zusätzliche Fahrten gegenüber heute.

Nachts fahren vor und nach Betriebsende jeweils 32 Mitarbeiter mit ihren Pkw über die Zufahrtstraßen, insgesamt finden ebenfalls 64 Fahrten statt. Hinzu kommen die nächtlichen 10 Fahrten der HW-Mitarbeiter, die zukünftig nachts in der HW28 arbeiten werden. Die Gesamtzahl der nächtlichen Fahrten beträgt demnach 74 und damit etwa 9 / h (8h Nachtzeit). Bei Gleichverteilung auf den Simonskaul und die Mönchsgasse fahren dort aufgerundet 5 Kfz pro Stunde zusätzlich zum Bestand.

		STR0		ST	R1
	DTV	M		N	Л
	(Kfz/24 h)	(Kfz/h)		(Kfz/h)	
		Tag	Nacht	Tag	Nacht
Mönchsgasse	5616	337	62	339	65
Simonskaul					
zw. Mönchsgasse und	3796	228	42	230	47
Jesuitengasse					
Simonskaul					
zw. Jesuitengasse	2642	159	29	161	34
und Neusser Straße					

Tabelle 6: Verkehrsaufkommen auf den Straßen Simonskaul und Mönchsgasse

Unter Beachtung des jeweiligen Verkehrsaufkommens wird nach RLS 90 ein Mittelungspegel im Abstand von 25 m errechnet:

$$L_{m}^{\left(25\right)}=37{,}3+10log\left[M\left(1+0{,}082\cdot p\right)\right]\left[dB(A)\right]$$

M: maßgebliche Verkehrsstärke pro Richtung für Tag und Nacht

p: Lkw-Anteil [%] für Tag und Nacht

$$p_{Tag} = p_{Nacht} = 0\%$$

Der so errechnete Pegel gilt unter festgelegten Randbedingungen, bei abweichenden Bedingungen sind entsprechende Zu- oder Abschläge wie folgt zu berücksichtigen.

Die zulässige Geschwindigkeit auf beiden Straßen beträgt v = 50 km/h. Der Korrekturfaktor D_v für die Geschwindigkeit ist abhängig vom Lkw-Anteil und ergibt sich aus:

$$\begin{split} D_{v} &= L_{Pkw} - 37.3 + 10 log \bigg[\frac{100 + \left(10^{0.1D} - 1\right) \cdot p}{100 + 8.23 \cdot p} \bigg] \ [dB] \\ L_{Pkw} &= 27.7 + 10 log \bigg[1 + \left(0.02 \cdot v_{Pkw}\right)^{3} \bigg] \\ L_{Lkw} &= 23.1 + 12.5 log \bigg(v_{Lkw} \bigg) \\ D &= L_{Lkw} - L_{Pkw} \end{split}$$

für p = 0% und v = 50 km/h ist

■ $D_{50 \text{ km/h}} = L_{Pkw} - 37.3 = -6.6 \text{ dB}$

Die Straßenoberflächen sind für Bestand und Planung asphaltiert, sodass hierfür kein Zuschlag anzurechnen ist:

D_{StrO} = 0 dB

Nach RLS 90 sind für Straßen mit Steigungen bzw. Gefällen > 5 % Geräuschzuschläge D_{Stg} zu berücksichtigen. Die Straßen Simonskaul und Mönchsgasse weisen keine entsprechenden Geländeformen auf, sodass

ist.

Der Emissionspegel berechnet sich aus den Parametern nach RLS90 mit folgender Formel:

$$L_{m,E} \ = L_m^{(25)} + D_v \ + D_{StrO} \ + D_{Stg}$$

Aus den angegebenen Parametern ergeben sich die folgenden Emissionspegel.

	STR0 L _{m,E} [dB(A)]			R1 _{n,E} (A)]
	Tag Nacht		Tag	Nacht
Mönchsgasse	56.0	48.6	56.0	48.8
Simonskaul				
zw. Mönchsgasse und	54.3	46.9	54.3	47.4
Jesuitengasse				
Simonskaul				
zw. Jesuitengasse	52.7	45.3	52.8	46
und Neusser Straße				

Tabelle 7: Emissionspegel Mönchgasse und Simonskaul

Die entfernungsabhängige erhöhte Störwirkung von Ampelanlagen nach RLS 90 wird für die LSA im Einmündungsbereich Simonskaul / Neusser Straße und im Kreuzungsbereich Simonskaul/Jesuitergasse (STR0 und STR1) berücksichtigt. Die zu vergebenden Zuschläge K gibt die RLS 90 wie in Tabelle 8 gezeigt vor.

Abstand des Immissionsortes	K [dB]
bis 40 m	3
über 40 bis 70 m	2
über 70 bis 100 m	1
über 100 m	0

Tabelle 8: Zuschläge an lichtzeichengeregelten Kreuzungen und Einmündungen

5 <u>BEURTEILUNG</u>

5.1 <u>HW und Abstellhalle</u>

5.1.1 <u>Immissionspegel</u>

Die Berechnungsergebnisse für die Immissionen aus dem Gesamtbetrieb nach den Vorschriften der TA Lärm sind den Tabellen der <u>Anlagen-Nr. 1.4.1 – 1.4.10</u> zu entnehmen. Sie zeigen, dass die Richtwerte für Tag und Nacht an allen Immissionsorten eingehalten werden.

Dementsprechend sind außer der Einhausung der Abstellanlage keine weiteren Schallschutzmaßnahmen erforderlich.

5.1.2 Maximalpegel

Die Berechnungsergebnisse für den Maximalpegel an den Anliegergebäuden sind in den Anlagen-Nr. 2.2.1 - 2.2.10 zusammengestellt. Es zeigt sich, dass die zulässigen Werte für das Allgemeine Wohngebiet zur Tagzeit IRW_{max, Tag, WA} = 85 dB(A) an allen Immissionspunkten eingehalten werden. Nachts fahren außerhalb von Hallen keine Fahrzeuge und es ist nicht davon auszugehen, dass aus den Hallen nachts einzelne Geräuschspitzen zu hören sind, die als Maximalpegel zu bewerten wären.

5.1.3 <u>Prognoseunsicherheit σ</u>

Die TA Lärm verlangt bei einer Schallprognose die Angabe einer Prognoseunsicherheit, die sich aus der Unsicherheit des Emissionspegels (diese wird standardmäßig mit ± 3 dB(A) angesetzt) und der Unsicherheit des Ausbreitungskoeffizienten zusammensetzt. Die Unsicherheit des Ausbreitungskoeffizienten wird mit folgender Formel bei der Berechnung berücksichtigt:

$$\sigma_{Ausbreitung} = 3 \cdot log 10 \left(\frac{d}{10} \right)$$

d: Abstand zwischen Quelle und Immissionsort

Die Prognoseunsicherheit liegt zwischen σ = \pm 0,4 dB(A) und \pm 3,9 dB(A), um die die berechneten Pegel abweichen können.

5.2 <u>Zulaufstrecke bis Anbindung Neusser Straße</u>

Den <u>Anlagen-Nr.3.2.1 + 3.2.2</u> sind die nach 16. BlmSchV zu berechnenden und zu beurteilenden Immissionspegel zusammengestellt. Aufgrund der Lage der Trasse zu den Anliegergebäuden sowie der Fahrtenanzahl und der Fahrzeuggeschwindigkeit kommt es an neun Gebäuden nachts zu Grenzwertüberschreitungen:

Neusser Str. 741 und 790

Simonskaul A (Haus-Nr. unbekannt, Lage: s. Plan <u>Anlage-Nr.3.1.3</u>), B (Haus-Nr. unbekannt, Lage: s Plan Anlage-Nr. 3.1.3), 76, 78, 82, 84 und 86

Diese Gebäude haben für den Nachtzeitraum einen Anspruch auf Schallschutz dem Grunde nach, d.h. nur wenn Schlafräume betroffen sind.

Durch sukzessive Schallberechnungen wurden Längen und Höhen der erforderlichen Schallschutzwände ermittelt. Die Gebäude Simonskaul 76, 78, 82, 84 und 86 werden durch eine ca. 115 m lange und 2,50 m hohe Schallschutzwand (s. <u>Anlage-Nr.3.3.1</u>) ausreichend geschützt, der Nachtgrenzwert wird entsprechend eingehalten.

Die Tabellen der <u>Anlagen-Nr. 3.4.1 + 3.4.2</u> beinhalten die Rechenergebnisse unter Berücksichtigung der Schallschutzwand.

Der erforderliche Schallschutz für die Gebäude Simonskaul A und B zur Nachtzeit soll mittels passivem Schallschutz (Schallschutzfenster) falls Schlafräume betroffen sind, umgesetzt werden. Bei den im Anbindungsbereich liegenden Gebäude 741 und 790 der Neusser Straße mit Anspruch auf Schallschutz zur Nachtzeit kann der Anspruch auf Schallschutz bei Schlafräumen (Nachtzeit) ebenfalls durch Schallschutzfenster gewährleistet werden. Da zur Einhaltung des Schallschutzes die Fenster nachts geschlossen bleiben müssen, sind zudem geeignete Schalldämmlüfter für den Luftaustausch einzubauen. Für die Festlegung der Schallschutzfensterklassen nach 24. BImSchV ist die Kenntnis der Raummaße erforderlich, diese sind – falls Schlafräume betroffen sind – entsprechend zu ermitteln.

5.3 Simonskaul / Mönchsgasse

Nach TALärm ist eine Untersuchung des schalltechnischen Einflusses der Kfz der Mitarbeiter auf den vorhandenen Straßenverkehrslärm im Bereich Simonskaul und Mönchsgasse durchzuführen. Die Berechnungsergebnisse sind in den Anlagen-Nr. 4.2.1 – 4.2.8 tabellarisch dargestellt. Die Pegel werden zukünftig lediglich zwischen 0,1 und 0,6 dB(A) ansteigen, nach Abschn. 3.2 ist damit das Kriterium eines Anstieges um mindestens 3 dB(A) unterschritten und es werden keine Maßnahmen erforderlich.

6. ZUSAMMENFASSUNG

Im vorliegenden Bericht sind die schalltechnischen Berechnungen für den Bereich Hauptwerkstattgelände mit Abstellanlage, Zulaufstrecke mit Anbindung an die Neusser Straße sowie für die Straßen Simonskaul und Mönchsgasse umfassend dargestellt und beurteilt. Bei einer Einhausung der Abstellanlage werden für das Betriebsgelände keine weiteren Schallschutzmaßnahmen erforderlich. Die verwendeten Richtwerte nach TA Lärm werden zur Tag- und Nachtzeit eingehalten.

Im Bereich der Zulaufstrecke sind ohne Maßnahmen Grenzwertüberschreitungen zur Nachtzeit an neun Gebäuden und damit dort ein Anspruch auf Schallschutz für Schlafräume dem Grunde nach zu erwarten. Für fünf Gebäude kann eine ausreichende Schallminderung mittels Schallschutzwänden erreicht werden (SSW: I ~ 115 m, h = 2,50 m). Für die vier weiteren

betroffenen Gebäude ist der Schallschutz bei Schlafräumen mit Passivmaßnahmen (Schallschutzfenster + Schalldämmlüfter) umzusetzen. Falls von der Baumaßnahme keine Schlafräume betroffen sind entfällt der Anspruch auf Schallschutz und es sind keine Maßnahmen erforderlich.

Der zusätzliche Kfz-Verkehr auf den Straßen Simonskaul und Mönchsgasse durch die KVB-Mitarbeiter (Fahrpersonal + HW-Mitarbeiter) führt nicht zu einer signifikanten Erhöhung der dortigen Schallbelastung, daher sind für diesen Bereich keine Minderungsmaßnahmen vorzusehen.

7. ANLAGEN

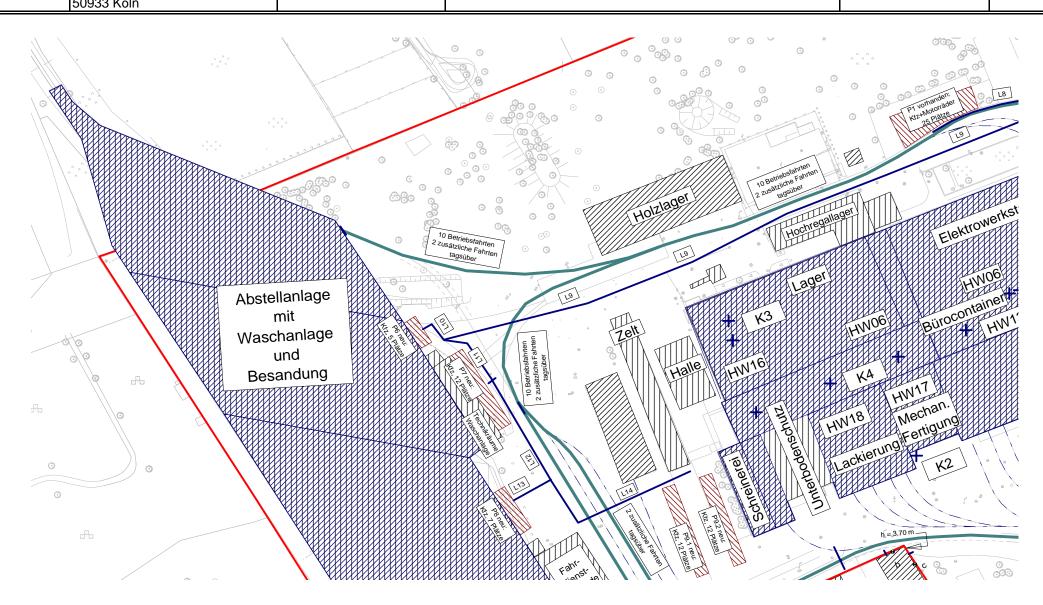
Anlagen-Nr. 1.1.1.1 – 1.1.1.4	Lagepläne Betriebsgelände, M 1 : 1500
Anlagen-Nr. 1.1.2	Legende Lagepläne
Anlage-Nr. 1.2	Gebietsausweisung
Anlagen-Nr. 1.3.1 – 1.3.4	Zusammenstellung der Schallleistungspegel / Innenpegel
	der Quellen auf dem Betriebsgelände
Anlagen-Nr. 1.4.1 – 1.4.10	Immissionspegel an der umliegenden Bebauung
Anlage-Nr. 2.1	Lage der Gleisabschnitte mit Maximalpegeln durch
	Kurvenquietschen
Anlagen-Nr. 2.2.1 – 2.2.10	Maximalpegel durch Kurvenquietschen an der umliegenden
	Bebauung
Anlagen-Nr. 3.1.1 – 3.1.4	Zulaufstrecke von Norden mit Anbindung
Anlagen-Nr. 3.1.1 – 3.1.4	Zulaufstrecke von Norden mit Anbindung an die Neusser Straße
Anlagen-Nr. 3.1.1 – 3.1.4 Anlagen-Nr. 3.2.1 + 3.2.2	_
•	an die Neusser Straße
•	an die Neusser Straße Beurteilungspegel durch den Schienenverkehr
Anlagen-Nr. 3.2.1 + 3.2.2	an die Neusser Straße Beurteilungspegel durch den Schienenverkehr auf der Zulaufstrecke
Anlagen-Nr. 3.2.1 + 3.2.2 Anlagen-Nr. 3.3.1 – 3.3.3	an die Neusser Straße Beurteilungspegel durch den Schienenverkehr auf der Zulaufstrecke Lageplan der Schallschutzwand
Anlagen-Nr. 3.2.1 + 3.2.2 Anlagen-Nr. 3.3.1 – 3.3.3 Anlagen-Nr. 3.4.1 + 3.4.2	an die Neusser Straße Beurteilungspegel durch den Schienenverkehr auf der Zulaufstrecke Lageplan der Schallschutzwand Beurteilungspegel durch den Schienenverkehr auf der Zulaufstrecke mit Schallschutzwand
Anlagen-Nr. 3.2.1 + 3.2.2 Anlagen-Nr. 3.3.1 – 3.3.3	an die Neusser Straße Beurteilungspegel durch den Schienenverkehr auf der Zulaufstrecke Lageplan der Schallschutzwand Beurteilungspegel durch den Schienenverkehr

zusätzlichen Fahrten (Simonskaul / Mönchsgasse)

8 ÄNDERUNGSINDEX

Index	Datum	Bearbeiter	Bemerkung
а	14.10.13	Hans	Redaktionelle Überarbeitung
b	16.10.13	Hans	Redaktionelle Überarbeitung

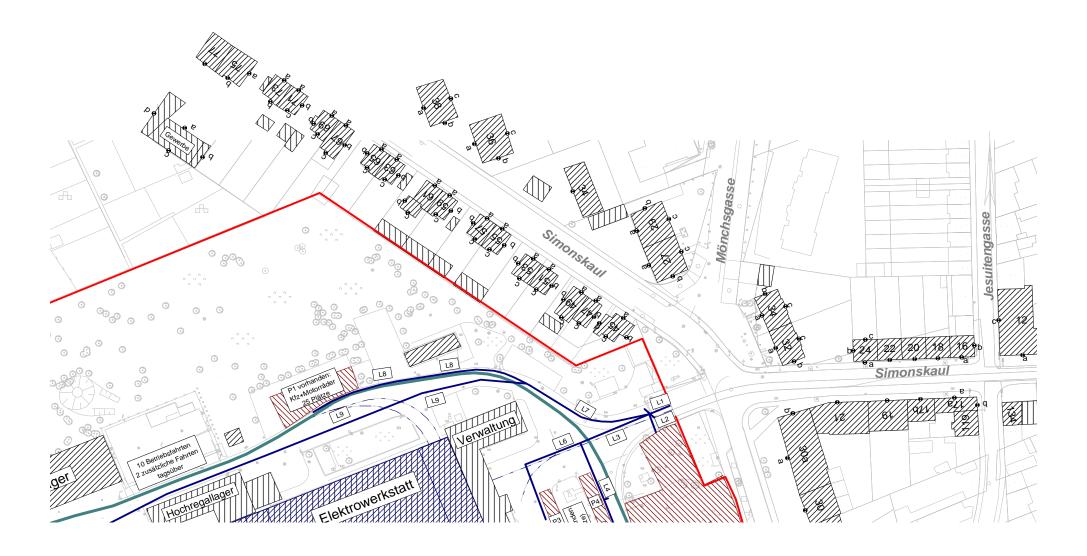
Bearbeitung: Dipl.-Ing. Vera Hans


Essen, den 11.10.2013

I.B.U. Ingenieurbüro für Schwingungs-, Schall- und Schienenverkehrstechnik GmbH

AUFTRAGGEBER:
Kölner Verkehrs-Betriebe AG
Scheidtweilerstraße 38
50033 Köln

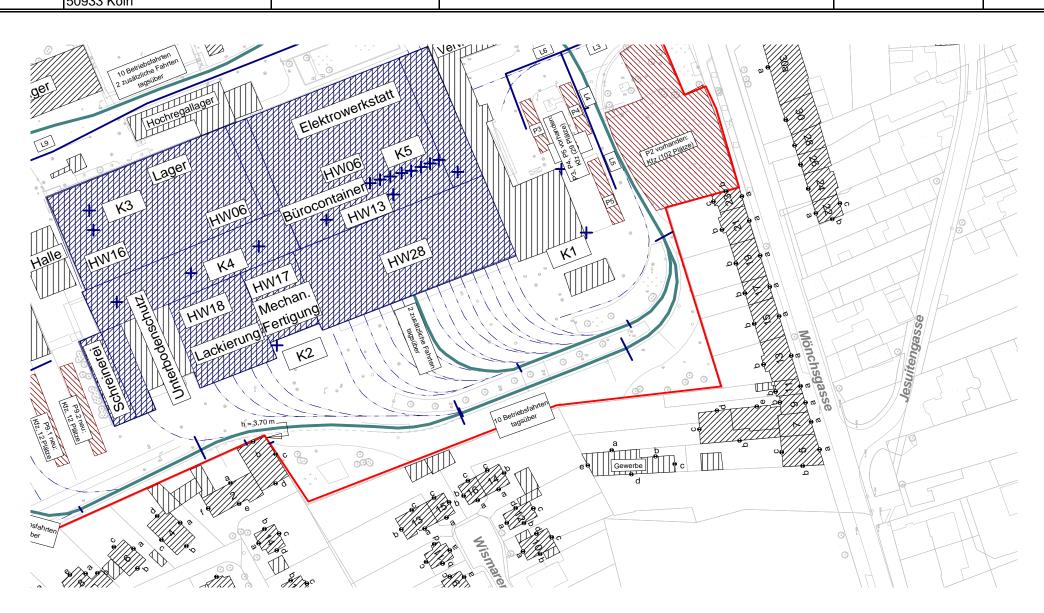
AUFTRAG-NR.: S 02.1127.13


HW Weidenpesch Lagepläne M 1:1500 **ANLAGE-NR.:** 1.1.1.1

AUFTRAGGEBER:
AUFTRAGGEBER: Kölner Verkehrs-Betriebe AG
Scheidtweilerstraße 38
50933 Köln

AUFTRAG-NR.:
S 02.1127.13

HW Weidenpesch Lagepläne M 1:1500 **ANLAGE-NR.:** 1.1.1.2


1127-G6 A.xlsx / a1.1.1

AUFTRAGGEBER:	AUFTRAG-NR.:	HW Weidenpesch	ANLAGE-NR.:	
Kölner Verkehrs-Betriebe AG	S 02.1127.13	Lagepläne	1.1.1.3	
Scheidtweilerstraße 38		M 1:1500		
50933 Köln				

1127-G6 A.xlsx / a1.1.1

AUFTRAGGEBER:	AUFTRAG-NR.:	HW Weidenpesch	ANLAGE-NR.:
Kölner Verkehrs-Betriebe AG	S 02.1127.13	Lagepläne	1.1.1.4
Scheidtweilerstraße 38		M 1:1500	
50933 Köln			

AUFTRAGGEBER:	AUFTRAG-NR.:	HW Weidenpesch	ANLAGE-NR.:	
Kölner Verkehrs-Betriebe AG	S 02.1127.13		1.1.2	
Scheidtweilerstraße 38		Lagepläne		
50933 Köln		Legende		

1127-G6 A.xlsx / a1.1.2

AUFTRAGGEBER: Kölner Verkehrs-Betriebe AG Scheidtweilerstraße 38 50933 Köln **AUFTRAG-NR.:** S 02.1127.13

HW Weidenpesch

Gebietsausweisung

ANLAGE-NR.: 1.2

Abstellanlage Weidenpesch Gebietskategorie für Lärmbeurteilung Lgpl. Gbungs-platz ShaGenbahn-Legende Gebietskategorie nach BauNVO ΜI WA

1127-G6 A.xlsx / a1.2 I.B.U. GmbH, Essen

AUFTRAGGEBER:
Kölner Verkehrs-Betriebe AG
Scheidtweilerstraße 38
50933 Köln

AUFTRAG-NR.:

B HW Weidenpesch
Zusammenstellung der
Schallleistungspegel / Innenpegel der Quellen
auf dem Betriebsgelände

Schienenverkehr

 $L'_{w} = L_{mE} + 19.2 + 5 dB(A)$ (Schienenbonus) [dB(A)]

konstante Eingabeparameter: Feste Fahrbahn: $D_{Fb} = 5 \text{ dB}$

Fahrzeuggeschwindigkeit: v = 30 km/h

Zuglänge: I = 56 m

Scheibenbremsenanteil: p = 100%

Fahrzeugparameter Straßenbahn: $D_{Fz} = 3 \text{ dB}$

Anzahl Fahrten	L_{mE} [dB(A)]	L' _w [dB(A)]
Tag		
10 (0.63 Fahrten/h)	38.1	62.3
2 (0.13 Fahrten/h)	31.1	55.3

Anzahl Fahrten	L _{mE} [dB(A)]	L' _w [dB(A)]
lautstärkste Nachtstunde		
32	55.2	79.4
18	52.7	76.9
16	52.2	76.4
14	51.6	75.8
10	50.2	74.4
8	49.2	73.4
6	47.9	72.1
4	46.2	70.4
2	43.2	67.4
1	40.2	64.4

Einwirkzeit tags: 960 Min, nachts: 60 Min

Für Fahrten über Gleisradien und Weichen sind für die jeweiligen Abschnitte die folgenden Zuschläge zu berücksichtigen:

R < 300 m: 8 dB (Kurvenquietschen nach Schall 03) + 6 dB (Einzeltonzuschlag) + 3 dB (Impulszuschlag) 300 m < R < 500 m: 3 dB (Kurvenquietschen nach Schall 03) + 6 dB (Einzeltonzuschlag) + 3 dB (Impulszuschlag) Weichenüberfahrt: 3 dB (Impulszuschlag)

Die zehn Betriebsfahrten und die beiden zusätzlichen Fahrten finden tagsüber außerhalb der Halle statt.

Alle Fahrten sind zudem innerhalb der Halle im Bereich der nördlichen Gleisharfe und der Abstellanlage zu berücksichtigen. Über die nördliche Gleisharfe verteilen sich die Fahrzeuge auf die Abstellgleise innerhalb der Halle, sodass alle 32 Gleise belegt sind.

Für die Berechnungen wurde die Halle in drei Abschnitte aufgeteilt: nördliche Gleisharfe: Verteilung der Fahrzeuge auf die Abstellgleise mittlerer Abstellbereich: hier werden jeweils zwei Fahrten berücksichtigt unterer Abstellbereich: hier wird jeweils eine Fahrt berücksichtigt

1127-G6 A.xlsx / a1.3

Um den Innenpegel aus den Schallleistungspegeln zu ermitteln sind zunächst die Einzelschallpegel der Gleise innerhalb des jeweiligen Hallenabschnittes logarithmisch zu addieren. Der Betrieb zweier Sandpumpen in der lautstärksten Nachtstunde mit $L_w = 90 \text{ dB}(A)$ je Pumpe wurde ebenfalls hinzuaddiert. Aus dem Gesamtschallleistungspegel ergibt sich der Innenpegel mit der folgenden Formel:

$$L_I \approx L_w + 14 + 10 \cdot lg \left(\frac{T}{V}\right)$$

L_w*: Gesamtschallleistungspegel der einzelnen Quellen innerhalb des Hallenabschnittes

T: Nachhallzeit in dem Hallenabschnitt (2 s)

V: Volumen des Hallenabschnittes

Die Hallenabschnitte weisen die folgenden Volumina auf:

nördliche Gleisharfe: V ~ 24.000 m³ mittlere Abstellbereich: V ~ 28.800 m³ unterer Abstellbereich: V ~ 38.400 m³

Hallenabschnitt	L _w [dB(A)]		L _I [dB(A)]	
	Tag	Nacht	Tag	Nacht
nördliche Gleisharfe	90	109	63	82
mittlerer Abstellbereich	-	99	-	71
unterer Abstellbereich	-	96	-	67

Die fettgedruckten Pegel sind die Innenpegel, die für die Berechnungen verwendet wurden. Das Bewertete Schalldämmaß aller Außenbauteile beträgt $R'_{w} = 20 \text{ dB}$

Die Hallentore sind in der lautstärksten Nachtstunde geöffnet, damit ist R'w = 0 dB für die Einfahrt

Parkplätze Einwirkzeit tags: 960 Min, nachts: 60 Min

Parkplatz	Bewegungen		Stellplätze	Bewegungen pro Stunde und Stellplatz [Pkw/h]		Schallleist pege	
	r	า	n _P			L _w [dB(A)]
Р	Tag	Nacht*		Tag	Nacht*	Tag	Nacht
1	100	-	25	0.25	-	81	-
2	408	-	102	0.25	-	86	-
3	36	-	9	0.25	-	70.5	-
4	36	-	9	0.25	-	70.5	-
5	44	-	11	0.25	-	72.1	-
6 neu	-	3	5	ı	0.66	-	72.2
7 neu	-	8	12	-	0.66	-	77.2
8 neu	-	5	7	-	0.66	-	73.7
9.1 neu	-	8	12	-	0.66	-	77.2
9.2 neu	-	9	12	-	0.66	-	77.2

^{*} in der lautstärksten Nachtstunde

1127-G6 A.xlsx / a1.3

AUFTRAGGEBER:
Kölner Verkehrs-Betriebe AG
Scheidtweilerstraße 38
50933 Köln

AUFTRAG-NR.:
HW Weidenpesch
Zusammenstellung der
Schallleistungspegel / Innenpegel der Quellen
auf dem Betriebsgelände

Fahrwege Kfz Einwirkzeit tags: 960 Min, nachts: 60 Min

	Ar	nzahl Fah	rten	Emissions	spegel L _{mE}	Schallleistu	ngspegel L'w
Fahrweg		Pkw		[dB	B(A)]	[dE	B(A)]
		am Tag					
L	am Tag	pro Stunde	Nacht*	Tag	Nacht*	Tag	Nacht*
1	624	39	32	44.6	45.4	63.8	64.6
2	408	26	-	42.7	-	61.9	-
3	116	7	-	37.6	-	56.8	-
4	80	5	-	35.5	-	54.7	-
5	44	3	-	33	-	52.2	-
6	18	1	-	29.3	-	48.5	-
7	100	6	42	36.5	44.8	55.7	64
8	100	6	10	36.5	38.5	55.7	57.7
9	-	-	32	-	43.6	-	62.8
10	-	-	2	-	31.6	-	50.8
11	-	-	30	-	43.3	-	62.5
12	-	-	22	-	42	-	61.2
13	-	-	17	-	40.9	-	60.1
14	-	-	8	-	37.6	-	56.8
15	-	-	9	-	38.1	-	57.3

^{*} in der lautstärksten Nachtstunde

Außerdem wird davon ausgegangen, dass auf den Fahrwegen L1, L7 und L9 noch maximal 3 Lkw am Tage mit Lm, $E = 37.6 \text{ dB}(A) \text{ und } L'_w = 56.8 \text{ dB}(A) \text{ hin- und zurückfahren}$

1127-G6 A.xlsx / a1.3

AUFTRAGGEBER:

50933 Köln

AUFTRAG-NR.:

Kölner Verkehrs-Betriebe AG S 02.1127.13 Scheidtweilerstraße 38

HW Weidenpesch Zusammenstellung der Schallleistungspegel / Innenpegel der Quellen auf dem Betriebsgelände

ANLAGE-NR.: 1.3.4

Hauptwerkstatt

außenliegende Schallquelle	Schallleistungspegel	Einwirkzeit		Quellenhöhe	
	[dB(A)]	[min]			
	Tag	Tag	Nacht	[m]	
Punktquellen					
K1	74.5	240	-	4.5	
K2	89.4	240	-	1	
K3	74.6	240	-	8.2	
K4	68.5	240	-	8.2	
K5	62.7	240	60	8.2	
K6	69.1	240	-	1	

innenliegende Schallquellen	Innenpegel [dB(A)]	Schalldämmaß [dB]		Einwirkzeit [min]	
	Tag	[ԱՄ]	Tag	• • •	
	Flächenschallquellen (Dä	cher)	Tug	144	3110
Werkstatt	73.8	49	960	960	60
Kassenentleerung	75.6	49	120	120	-
Mittelschiff	73.8	49	960	960	_
Schreinerei	87.5	49	960	960	_
Unterbodenschutz	83.6	49	960	960	_
Lackiererei	75.2	49	960	960	_
Mechanische Fertigung	88.7	49	960	960	-
HW28	73.7	49	960	960	60
vertikale	e Flächenschallquellen (W	ände, Tore)			
Mauer Kasse	79.7	55	120	120	-
Schleuse Kasse	79.7	15	120	120	-
Mauer über Schleuse Kasse	79.7	55	120	120	-
Mauer Werkstatt	73.8	55	960	960	60
Tor Werkstatt	73.8	20	960	960	60
Mauer über Tor Werkstatt	73.8	55	960	960	60
Mauer Mittelschiff W	73.8	55	960	960	-
Mauer Schreinerei	87.5	49	960	960	-
Mauer Lackiererei	75.2	55	960	960	-
Tor Lackiererei	75.2	20	960	960	-
Fenster mechan. Fertigung	88.7	38	960	960	-
Mauer HW28	73.7	55	960	960	60
Tore HW28	73.7	20	960	960	60

1127-G6 A.xlsx / a1.3 I.B.U. GmbH, Essen

Immissionsort		Etage		Immissionspegel		Immissionsrichtwert		Differenzpegel	
				L _r [d	B(A)]	L _{IRW} [dB(A)]	$\Delta L = L_r$	- L _{IRW}
				Tag	Nacht	Tag	Nacht	Tag	Nacht
			EG	33.2	33.3	55	40	-21.8	-6.7
	50		1.OG	37.5	34.7	55	40	-17.5	-5.3
_			2.OG	40.3	33.8	55	40	-14.7	-6.2
			EG	34.7	33.9	55	40	-20.3	-6.1
	52		1.OG	39	34.7	55	40	-16	-5.3
			2.OG	40.8	34.6	55	40	-14.2	-5.4
_			EG	34.9	34.3	55	40	-20.1	-5.7
	54		1.OG	39.2	35.1	55	40	-15.8	-4.9
_			EG	36.2	34.7	55	40	-18.8	-5.3
	56		1.OG	39.2	35.4	55	40	-15.8	-4.6
_	58		EG	37.5	34.7	55	40	-17.5	-5.3
Ginsterpfad			1.OG	39.4	35.5	55	40	-15.6	-4.5
_	60 62		EG	38.1	35.3	55	40	-16.9	-4.7
			1.OG	40.1	36	55	40	-14.9	-4
_			EG	37.9	34.5	55	40	-17.1	-5.5
			1.OG	39.9	35.5	55	40	-15.1	-4.5
_			EG	37.2	34.6	55	40	-17.8	-5.4
		а	1.OG	39.1	35.3	55	40	-15.9	-4.7
			EG	32.3	34.2	55	40	-22.7	-5.8
	64	b	1.OG	36.7	34.9	55	40	-18.3	-5.1
			EG	25	33.1	55	40	-30	-6.9
		С	1.OG	32.6	34.2	55	40	-22.4	-5.8
	7	a b	EG	23.5	11	58	43	-34.5	-32
			1.OG	23.6	11.2	58	43	-34.4	-31.8
			2.OG	24.5	13.2	58	43	-33.5	-29.8
			3.OG	31.9	19.3	58	43	-26.1	-23.7
			EG	25	13.3	58	43	-33	-29.7
			1.OG	26	15	58	43	-32	-28
			2.OG	28.2	16.8	58	43	-29.8	-26.2
			3.OG	33	22.1	58	43	-25	-20.9
		С	EG	36.5	26.9	58	43	-21.5	-16.1
			1.OG	39.6	29.8	58	43	-18.4	-13.2
			2.OG	43.2	30.7	58	43	-14.8	-12.3
			3.OG	43.3	30.9	58	43	-14.7	-12.1
_			EG	26.8	13.3	58	43	-31.2	-29.7
		а	1.OG	32.6	19.1	58	43	-25.4	-23.9
		b	EG	34.6	21.1	58	43	-23.4	-21.9
Mönchsgasse _		C	EG	46.5	31.1	58	43	-11.5	-11.9
		d	EG	47.7	32.5	58	43	-10.3	-10.5
		e	EG	45.8	32.2	58	43	-10.3	-10.8
		<u> </u>	EG	25.8	11.9	58	43	-12.2	-31.1
	9	а	1.OG	26.2	12.6	58	43	-32.2 -31.8	-30.4
		а	2.OG	33.4	19.7	58	43	-31.6 -24.6	-23.3
		b	Z.OG EG	45.1	30.8	58	43 43	-24.6 -12.9	-23.3 -12.2
			1.OG	46.3	31.4	58	43 43	-12.9 -11.7	-12.2
				46.3 44.9	31.4	58	43 43		
			2.OG EG	25.6	11.9	58	43	-13.1 -32.4	-11.8 -31.1
	11	a							
			1.OG	25.9	12.5	58 50	43	-32.1	-30.5
			2.OG	32.9	19.7	58 50	43	-25.1	-23.3
			EG 1 OC	45.3	31.4	58 50	43	-12.7	-11.6
		b	1.OG	47 45 5	33.3	58 50	43	-11	-9.7
			2.OG	45.5	31.3	58	43	-12.5	-11.7

1127-G6 A.xlsx / a1.4 I.B.U. GmbH, Essen

AUFTRAGEBER:
Kölner Verkehrs-Betriebe AG
Scheidtweilerstraße 38
50933 Köln

AUFTRAG-NR.:
HW Weidenpesch
Immissionspegel an der umliegenden
Bebauung durch den Betrieb der Abstellanlage und der HW Weidenpesch

Immissionsort			Etage	Immissionspegel		Immissionsrichtwert		Differenzpegel	
	-		L_r [dB(A)]		$L_{IRW}[dB(A)]$		$\Delta L = L_r - L_{IRW}$		
				Tag	Nacht	Tag	Nacht	Tag	Nacht
			EG	26.3	12	58	43	-31.7	-31
_	13	а	1.OG	26.8	12.8	58	43	-31.2	-30.2
			2.OG	33.8	20.1	58	43	-24.2	-22.9
			EG	46.5	31.2	58	43	-11.5	-11.8
		b	1.OG	47.5	31.6	58	43	-10.5	-11.4
			2.OG	47.6	31.7	58	43	-10.4	-11.3
	15	а	EG	29.1	14.1	58	43	-28.9	-28.9
		b	1.OG	35.9	21.1	58	43	-22.1	-21.9
			EG	46.5	30.8	58	43	-11.5	-12.2
		D	1.OG	48	31.6	58	43	-10	-11.4
	17	a b	EG	34.2	21.5	58	43	-23.8	-21.5
			1.OG	37.4	23.6	58	43	-20.6	-19.4
			EG	46.7	30.5	58	43	-11.3	-12.5
			1.OG	48.3	31.6	58	43	-9.7	-11.4
	19	а	EG	32.8	24.8	58	43	-25.2	-18.2
			1.OG	37	26.9	58	43	-21	-16.1
	19	b	EG	46.7	30.3	58	43	-11.3	-12.7
Mönchsgasse		D	1.OG	48.3	31.9	58	43	-9.7	-11.1
	21	a b	EG	38.4	29.1	58	43	-19.6	-13.9
			1.OG	40.1	29.9	58	43	-17.9	-13.1
			EG	46.8	31.6	58	43	-11.2	-11.4
			1.OG	48.3	32.9	58	43	-9.7	-10.1
	22	a b c	EG	38.4	27.8	58	43	-19.6	-15.2
			1.OG	39.9	30	58	43	-18.1	-13
			EG	31.6	13.9	58	43	-26.4	-29.1
			1.OG	35.7	20.7	58	43	-22.3	-22.3
			EG	25.2	12.4	58	43	-32.8	-30.6
			1.OG	30.6	17.8	58	43	-27.4	-25.2
	23	2	EG	38.5	26.7	58	43	-19.5	-16.3
		а	1.OG	40.4	28.2	58	43	-17.6	-14.8
		c	EG	49.3	32.3	58	43	-8.7	-10.7
			1.OG	47.9	33	58	43	-10.1	-10
			EG	47.4	31.4	58	43	-10.6	-11.6
			1.OG	48.6	32.5	58	43	-9.4	-10.5
	24	_	EG	39.4	29.5	58	43	-18.6	-13.5
			1.OG	40.7	30.4	58	43	-17.3	-12.6
			2.OG	42	30.9	58	43	-16	-12.1
	26		EG	40.2	30	58	43	-17.8	-13
			1.OG	41.3	30.4	58	43	-16.7	-12.6
			2.OG	42.3	31.2	58	43	-15.7	-11.8
	27		EG	38.5	31.3	58	43	-19.5	-11.7
		а	1.OG	40.2	33.3	58	43	-17.8	-9.7
			2.OG	42.9	34.5	58	43	-15.1	-8.5
			EG	40.1	30	58	43	-17.9	-13
		b	1.OG	40.9	31.7	58	43	-17.1	-11.3
			2.OG	42.9	34.1	58	43	-15.1	-8.9
			EG	30.1	15.2	58	43	-27.9	-27.8
		С	1.OG	30.5	16.4	58	43	-27.5	-26.6
			2.OG	32	22.9	58	43	-26	-20.1
	28		EG	40.6	30.2	58	43	-17.4	-12.8
			1.OG	41.4	30.5	58	43	-16.6	-12.5
			2.OG	42.5	31	58	43	-15.5	-12

1127-G6 A.xlsx / a1.4 I.B.U. GmbH, Essen

AUFTRAGGEBER:
Kölner Verkehrs-Betriebe AG
Scheidtweilerstraße 38
50933 Köln

AUFTRAG-NR.:
S 02.1127.13
Immissionspegel an der umliegenden
Bebauung durch den Betrieb der Abstellanlage und der HW Weidenpesch

L	Immissionsort			Etage		onspegel	Immission	nsrichtwert	Differen	
Fig. Applied					L _r [d	B(A)]	L _{IRW} [0	dB(A)]	$\Delta L = L_r$	- L _{IRW}
Fig. Applied					Tag	Nacht	Tag	Nacht	Tag	Nacht
Part				EG						
Part			а						-17.8	
Fig. 26,9 25,8 58 43 -31,1 -17,2										
Part					.		•			
Mönchsgasse 2,0G		29	b							
Fig.										
C 1,0G 23,9 15,7 58 43 -34,1 2,7,3					.		•			
Beg 1.00			С							
Second S										
Monthsgasse	_									
Note		30								
A										
Mönchsgasse	-									
Mönchsgasse 30a			а							
Mönchsgasse Fig. Sign S			-							
Mönchsgasse		30a					•			
Mönchsgasse 2.0G 40.3 32.6 58 43 -17.7 -10.4 a EG 41.8 33 58 43 -16.2 -10 b EG 38.8 26.7 58 43 -16.1 -9.9 C EG 38.8 26.7 58 43 -17.8 -13.2 EG 32.4 26.2 58 43 -17.8 -13.2 EG 32.4 26.2 58 43 -25.6 -16.8 -1.0G 35.5 28.4 58 43 -22.5 -14.6 -1.0G 41.8 33.4 58 43 -16.2 -9.6 -1.0G 38 30.5 58 43 -20 -12.3 -1.0G 33.7 23.9 58 43 -27.9 -23.2 -2.0 -1.0G 33.7 23.9 58 43 -15.4 -16.8 -1.0G 46.6			b							
A EG 41.8 33 58 43 -16.2 -10 -9.9 B EG 38.8 26.7 58 43 -17.8 -13.2 B EG 38.8 26.7 58 43 -17.8 -13.2 C EG 32.4 26.2 58 43 -22.5 -14.6 B EG 41.7 33 58 43 -16.3 -10.6 A 1.0G 41.8 33.4 58 43 -22.5 -14.6 A 1.0G 41.8 33.4 58 43 -16.3 -10 A 1.0G 41.8 33.4 58 43 -16.3 -10 A 1.0G 38 30.5 58 43 -20 -12.3 A 1.0G 38 30.5 58 43 -20 -12.3 A 2.0 -12.5 C EG 30.1 19.8 58 43 -20 -12.5 C EG 30.1 19.8 58 43 -20 -12.5 A 2.0 -12.5 A 3.1 -16.2 -9.6 A 3.1 -10.6 -10.6 A 3.1 -10.6 A	Mönchsgasse		٥							
Second Parison										
B			а							
Second Process of Second Pro					.		•			
C EG 32.4 26.2 58 43 -25.6 -16.8		32	b							
C 1.0G 35.5 28.4 58 43 -22.5 -14.6 A EG 41.7 33 58 43 -16.3 -10 A 1.0G 41.8 33.4 58 43 -16.2 -9.6 B EG 38 30.7 58 43 -20 -12.5 C EG 30.1 19.8 58 43 -20 -12.5 EG 30.1 19.8 58 43 -20 -12.5 EG 30.1 19.8 58 43 -27.9 -23.2 C 1.0G 33.7 23.9 58 43 -24.3 -19.1 A EG 46.4 32.4 58 43 -11.6 -10.6 b EG 45.6 31.6 58 43 -12.4 -11.4 C EG 42.6 27.2 58 43 -12.4 -11.4 C EG 43.1 32 58 43 -12.8 -11.6 EG 34.7 21.8 55 40 -20.3 -18.2 A EG 34.7 21.8 55 40 -20.3 -13.4 A EG 34.7 21.8 55 40 -16.8 -13.4 A EG 34.7 24.8 55 40 -16.8 -13.4 A EG 35.9 31.5 55 40 -19.1 -8.5 A EG 39.1 26.7 55 40 -11.7 -11.3 A EG 39.1 26.7 55 40 -14.7 -11.3 A EG 35.6 30.3 55 40 -14.7 -11.3 A EG 35.6 30.3 55 40 -15.6 -7 A EG 42 31.8 55 40 -13.7 -12 A EG 42.3 30.7 55 40 -12.7 -9.3 A EG 44.3 28 55 40 -12.7 -9.3 A EG 44.3 28 55 40 -12.7 -9.3 A EG 44.3 38 55 40 -12.7 -9.3 A EG 44.3 30.7 55 40 -12.7 -9.3 A EG 33.3 27 55 40 -12.7 -9.3 A EG 44.3 30.7 55 40 -12.7 -13.8 A EG 44.3 30.7 55 40 -12.7 -12.8 A					•					
A EG 41.7 33 58 43 -16.3 -10 1.0 B EG 38 30.7 58 43 -20 -12.3 B EG 38 30.5 58 43 -20 -12.5 B EG 38 30.5 58 43 -20 -12.5 B EG 30.1 19.8 58 43 -20 -12.5 C EG 30.1 19.8 58 43 -27.9 -23.2 C 1.0G 33.7 23.9 58 43 -24.3 -19.1 B EG 46.4 32.4 58 43 -11.6 -10.6 B EG 45.6 31.6 58 43 -12.4 -11.4 B EG 46.6 27.2 58 43 -12.4 -11.4 B EG 45.6 31.6 58 43 -12.4 -11.4 B EG 45.6 31.6 58 43 -12.4 -11.4 B EG 45.6 31.6 58 43 -12.4 -11.4 B EG 35.2 21.5 58 43 -12.4 -11.4 B EG 35.2 21.5 58 43 -12.9 -11. B EG 34.7 21.8 55 40 -20.3 -18.2 B EG 34.7 21.8 55 40 -10.8 -13.4 B EG 32 27 55 40 -10.8 -13.4 B EG 34 28.6 55 40 -19.1 -8.5 B EG 39.1 26.7 55 40 -19.1 -8.5 B EG 39.1 26.7 55 40 -11.9 -11.3 B EG 39.1 26.7 55 40 -11.7 -11.3 B EG 39.1 26.7 55 40 -13.7 -12 B EG 39.1 26.7 55 40 -13			С							
A 1.OG 41.8 33.4 58 43 -16.2 -9.6 BEG 38 30.7 58 43 -20 -12.3 1.OG 38 30.5 58 43 -20 -12.5 C EG 30.1 19.8 58 43 -20 -12.5 1.OG 33.7 23.9 58 43 -24.3 -19.1 A EG 45.6 31.6 58 43 -12.4 -11.6 C EG 45.6 31.6 58 43 -12.4 -11.6 C EG 42.6 27.2 58 43 -12.4 -11.4 C EG 43.1 32 58 43 -12.4 -11.6 C EG 43.1 32 58 43 -12.4 -11.6 C EG 43.1 32 58 43 -12.4 -11.4 A EG 35.2 21.5 58 43 -12.4 -11.8 A EG 34.7 21.8 55 40 -20.3 -18.2 A EG 34.7 21.8 55 40 -20.3 -18.2 A EG 34.7 21.8 55 40 -10.8 -13.4 A EG 32 27 55 40 -23 -13 A EG 34 28.6 55 40 -11.1 A EG 39.1 26.7 55 40 -11.1 A EG 39.1 26.7 55 40 -11.3 A EG 39.1 26.7 55 40 -11.1 A EG 39.1 26.7 55 40 -11.3 A EG 39.1 26.7 55 40 -11.3 A EG 39.1 26.7 55 40 -11.7 -11.3 A EG 39.4 33 55 40 -11.7 -11.3 A EG 39.4 33 55 40 -12.6 -7 A EG 39.4 33 55 40 -12.6 -7 A EG 39.4 33 55 40 -12.6 -7 A EG 39.4 33 55 40 -12.6 -2 A EG 39.4 33 55 40 -12.6 -2 A EG 39.4 33 55 40 -12.6 -2 A EG 41.3 28 55 40 -12.7 -9.3 A EG 42.8 40.7 -9.7 -9.3 A EG 41.3 28 55 40 -12.7 -9.3 A EG 41	-									
Bestocker Str. 34			а							
Rostocker Str. A					.		•			
Rostocker Str. C EG 30.1 19.8 58 43 -27.9 -23.2 -23		34	b							
Rostocker Str. Column					•		•			
Rostocker Str. A			С							
Gewerbe	_									
Rostocker Str. Gewerbe C EG							•			
Rostocker Str. d EG 35.2 21.5 58 43 -22.8 -21.5 e EG 43.1 32 58 43 -14.9 -11 BG 34.7 21.8 55 40 -20.3 -18.2 1.0G 38.2 26.6 55 40 -16.8 -13.4 BG 32 27 55 40 -19.1 -8.5 1.0G 35.9 31.5 55 40 -19.1 -8.5 BG 34 28.6 55 40 -21 -11.4 1.0G 37 31.1 55 40 -18 -8.9 1.0G 39.1 26.7 55 40 -15.9 -13.3 1.0G 40.3 28.7 55 40 -14.7 -11.3 BG 35.6 30.3 55 40 -19.4 -9.7 1.0G 39.4 33 55 40 -15.6 -7 BG 42 31.8 55 40 -15.6 -7 BG 42 31.8 55 40 -12 -6.2 C EG 41.3 28 55 40 -12.7 -9.3 C EG 33.3 27 55 40 -12.7 -9.3 EG 34.3 28 55 40 -12.7 -12.8 EG 35.4 20.8 20.8 EG 35.4 20.8 20.8 EG 35.4 20.8 20.8 EG 3		Gowerhe			•		•			
Rostocker Str. e EG 43.1 32 58 43 -14.9 -11 a EG 34.7 21.8 55 40 -20.3 -18.2 b EG 32 27 55 40 -16.8 -13.4 b EG 32 27 55 40 -19.1 -8.5 10 a EG 34 28.6 55 40 -19.1 -8.5 a EG 34 28.6 55 40 -21 -11.4 1.0G 37 31.1 55 40 -18 -8.9 b EG 39.1 26.7 55 40 -15.9 -13.3 1.0G 40.3 28.7 55 40 -14.7 -11.3 a EG 35.6 30.3 55 40 -19.4 -9.7 1.0G 39.4 33 55 40 -15.6 -7 b EG 42 31.8 55 40 -13 -8.2 1.0G 43 33.8 55 40 -12 -6.2 EG 41.3 28 55 40 -12.7 -9.3 d EG 33 27 55 40 -22 -13		Geweibe								
Rostocker Str. Part					.		•			
Rostocker Str. Part			е							
Beg 35.6 30.3 55 40 -19.1 -8.5 10 EG 39.1 26.7 55 40 -18 -8.9			а							
Rostocker Str. 10 1.0G 35.9 31.5 55 40 -19.1 -8.5		9			•		•			
Rostocker Str. 10 a EG 34 28.6 55 40 -21 -11.4 -8.9			b							
Rostocker Str. 10	-									
Rostocker Str. B			а							
Rostocker Str. b 1.0G 40.3 28.7 55 40 -15.9 -13.3		10			.		•			
Rostocker Str. 1.0G			b							
12 A	Rostocker Str									
12			а							
12 EG 33 27 55 40 -12 -6.2 C EG 41.3 28 55 40 -13.7 -12 -13.7 -12 -13.7 -12 -13.7					•		•			
12			b							
C EG 41.3 28 55 40 -13.7 -12 1.0G 42.3 30.7 55 40 -12.7 -9.3 27 55 40 -22 -13		12				•	•			
1.OG 42.3 30.7 55 40 -12.7 -9.3 EG 33 27 55 40 -22 -13			С							
					•		•			
1.OG 36.5 24.1 55 40 -18.5 -15.9			Ч							
			u	1.OG	36.5	24.1	55	40	-18.5	-15.9

AUFTRAGGEBER:
Kölner Verkehrs-Betriebe AG
Scheidtweilerstraße 38
50933 Köln

AUFTRAG-NR.:
HW Weidenpesch
Immissionspegel an der umliegenden
Bebauung durch den Betrieb der Abstellanlage und der HW Weidenpesch

Immissionsort		Etage	Immissi	onspegel	Immission	nsrichtwert	Differen	zpegel
		_	L _r [d	B(A)]	L _{IRW} [0	dB(A)]	$\Delta L = L_r$	- L _{IRW}
			Tag	Nacht	Tag	Nacht	Tag	Nacht
		EG	33.7	29.5	55	40	-21.3	-10.5
		a 1.0G	37.9	33.8	55	40	-17.1	-6.2
		L EG	42.7	30.4	55	40	-12.3	-9.6
Dootookou Ctu	4.4	b 1.OG	44.1	34.1	55	40	-10.9	-5.9
Rostocker Str.	14	EG	43.2	29.8	55	40	-11.8	-10.2
		c 1.0G	44.2	31.6	55	40	-10.8	-8.4
		d EG	32.2	25	55	40	-22.8	-15
		^u 1.OG	37.6	25.7	55	40	-17.4	-14.3
		EG	32.1	26.6	58	43	-25.9	-16.4
		a 1.0G	33.8	27.6	58	43	-24.2	-15.4
		⊾ EG	19.1	9.8	58	43	-38.9	-33.2
	40	b 1.OG	24.4	15.1	58	43	-33.6	-27.9
	10	EG	22.2	12.9	58	43	-35.8	-30.1
		c 1.OG	27.7	20.1	58	43	-30.3	-22.9
		FG	25.9	15.4	58	43	-32.1	-27.6
		d 1.OG	29.3	18.6	58	43	-28.7	-24.4
_		EG	34.9	29.4	58	43	-23.1	-13.6
		a 1.OG	35.7	30	58	43	-22.3	-13
		FG	25.7	14.3	58	43	-32.3	-28.7
	12	b 1.OG	27.8	11.8	58	43	-30.2	-31.2
		₋ EG	30.4	25.4	58	43	-27.6	-17.6
		c 1.OG	33.9	27.2	58	43	-24.1	-15.8
-		EG	35.2	28.6	58	43	-22.8	-14.4
		a 1.OG	36	29.5	58	43	-22.0	-13.5
	16	EG	27.7	21.6	58	43	-30.3	-21.4
		b 1.OG	32.5	26.7	58	43	-25.5	-16.3
-		EG	33.2	24.6	58	43	-24.8	-18.4
		a 1.OG	33.3	26.1	58	43	-24.7	-16.9
	17a	, EG	27.2	19.9	58	43	-30.8	-23.1
Simonskaul		b 1.OG	31.9	25.4	58	43	-26.1	-17.6
-		EG	33.8	25.3	58	43	-24.2	-17.7
	17b	1.OG	33.9	26.8	58	43	-24.1	-16.2
_		EG	34.9	28.6	58	43	-23.1	-14.4
	18	1.OG	35.7	29.6	58	43	-22.3	-13.4
_		EG	35	25.9	58	43	-23	-17.1
	19	1.OG	35.5	27.4	58	43	-22.5	-15.6
_		EG	35.2	29	58	43	-22.8	-14
	20	1.OG	36.3	30	58	43	-21.7	-13
-		EG	35.8	27.7	58	43	-22.2	-15.3
	21	1.OG	36.8	29.2	58	43	-22.2	-13.8
-		EG	35.5	29.5	58	43	-21.2	-13.5
	22	1.OG	36.7	30.2	58	43	-22.3 -21.3	-12.8
-		EG	36.8	30.2	58	43	-21.3	-12.9
		a 1.0G	37.6	30.1	58	43	-21.2 -20.4	-12.9
		EG	37.6 35.8	28.1	58	43	-20.4 -22.2	-12.3 -14.9
	24	n i						
		1.OG	38	30.5	58 50	43	-20	-12.5
		c EG	24.9	15.9	58 50	43	-33.1	-27.1
-		1.OG	32	24.5	58	43	-26	-18.5
	34	EG	38.7	31.1	58	43	-19.3	-11.9
		1.OG	42.2	33.7	58	43	-15.8	-9.3

AUFTRAGEBER:
Kölner Verkehrs-Betriebe AG
Scheidtweilerstraße 38
50933 Köln

AUFTRAG-NR.:

Bebauung durch den Betrieb der Abstellanlage und der HW Weidenpesch

HW Weidenpesch
Immissionspegel an der umliegenden
Bebauung durch den Betrieb der Abstellanlage und der HW Weidenpesch

Immissionsort			Etage		onspegel	Immission	srichtwert	Differen	
				L _r [d	B(A)]	L _{IRW} [c	dB(A)]	$\Delta L = L_r$	- L _{IRW}
				Tag	Nacht	Tag	Nacht	Tag	Nacht
		0	EG	36.1	30.2	58	43	-21.9	-12.8
		а	1.OG	39.3	33.3	58	43	-18.7	-9.7
	36	b	EG	36.5	29	58	43	-21.5	-14
	30	D	1.OG	39.3	32.3	58	43	-18.7	-10.7
		•	EG	29.2	17	58	43	-28.8	-26
		С	1.OG	33.5	23.1	58	43	-24.5	-19.9
		а	EG	33.6	29.7	58	43	-24.4	-13.3
		а	1.OG	37.2	32.7	58	43	-20.8	-10.3
	38	b	EG	36.7	30	58	43	-21.3	-13
	30	D	1.OG	39.6	33.3	58	43	-18.4	-9.7
		С	EG	29.9	17.1	58	43	-28.1	-25.9
		C	1.OG	33.2	23.2	58	43	-24.8	-19.8
		а	EG	31.6	23.3	58	43	-26.4	-19.7
		а	1.OG	36.7	27.6	58	43	-21.3	-15.4
		d	EG	46	35.9	58	43	-12	-7.1
	45	u	1.OG	47.5	38	58	43	-10.5	-5
	45	b	EG	44.8	37.3	58	43	-13.2	-5.7
		D	1.OG	45.9	38.1	58	43	-12.1	-4.9
		•	EG	48	39	58	43	-10	-4
		С	1.OG	48.9	40	58	43	-9.1	-3
		0	EG	32.3	27.7	58	43	-25.7	-15.3
		а	1.OG	37.8	30.4	58	43	-20.2	-12.6
	47	L	EG	43.8	34.8	58	43	-14.2	-8.2
	47	b	1.OG	46.2	36.9	58	43	-11.8	-6.1
Simonskaul			EG	48.6	38.9	58	43	-9.4	-4.1
		С	1.OG	49.8	40.2	58	43	-8.2	-2.8
		0	EG	32.6	27.7	58	43	-25.4	-15.3
		а	1.OG	37.4	30.3	58	43	-20.6	-12.7
	49	b	EG	41.6	33.8	58	43	-16.4	-9.2
			EG	46.7	37.3	58	43	-11.3	-5.7
		С	1.OG	50.3	39.9	58	43	-7.7	-3.1
_			EG	36.3	29.5	58	43	-21.7	-13.5
		а	1.OG	46.4	37.2	58	43	-11.6	-5.8
	51	b	EG	43.8	33.9	58	43	-14.2	-9.1
	Ji	U	1.OG	47.6	37.9	58	43	-10.4	-5.1
			EG	47.2	37.1	58	43	-10.8	-5.9
		С	1.OG	49	38.7	58	43	-9	-4.3
_		3	EG	36.8	29.6	58	43	-21.2	-13.4
		а	1.OG	46.5	37.1	58	43	-11.5	-5.9
	53	b	EG	38.7	32.6	58	43	-19.3	-10.4
	55	D	1.OG	47.3	37.5	58	43	-10.7	-5.5
		С	EG	47.2	36.9	58	43	-10.8	-6.1
			1.OG	48.5	38.4	58	43	-9.5	-4.6
_			EG	33.3	24.2	58	43	-24.7	-18.8
	55	а	1.OG	37.3	28	58	43	-20.7	-15
		الله	EG	44.7	33.1	58	43	-13.3	-9.9
		b	1.OG	45.8	35	58	43	-12.2	-8
			EG	44.9	34.5	58	43	-13.1	-8.5
		С	1.OG	46.4	36.7	58	43	-11.6	-6.3

AUFTRAGGEBER:
Kölner Verkehrs-Betriebe AG
Scheidtweilerstraße 38
50933 Köln

AUFTRAG-NR.:
S 02.1127.13

HW Weidenpesch Immissionspegel an der umliegenden Bebauung durch den Betrieb der Abstellanlage und der HW Weidenpesch

ANLAGE-NR.: 1.4.6

Immissionsort			Etage		onspegel	Immission	nsrichtwert	Differen	
				L _r [d	B(A)]	L _{IRW} [0	dB(A)]	$\Delta L = L_r$	- L _{IRW}
				Tag	Nacht	Tag	Nacht	Tag	Nacht
		а	EG	33.2	23.7	58	43	-24.8	-19.3
		а	1.OG	37.4	28.2	58	43	-20.6	-14.8
	57	b	EG	40.9	32.3	58	43	-17.1	-10.7
	31		1.OG	39.7	33.4	58	43	-18.3	-9.6
		С	EG	36.8	31.9	58	43	-21.2	-11.1
_			1.OG	40.3	33.6	58	43	-17.7	-9.4
		а	EG	31.6	22.3	58	43	-26.4	-20.7
		<u>~</u>	1.OG	35.7	26.6	58	43	-22.3	-16.4
	59	b	EG	40.1	31.8	58	43	-17.9	-11.2
	00		1.OG	43.8	33.6	58	43	-14.2	-9.4
		С	EG	41.2	31.7	58	43	-16.8	-11.3
_			1.OG	44.3	35.6	58	43	-13.7	-7.4
		а	EG	29.6	21.9	58	43	-28.4	-21.1
			1.OG	34.4	26.8	58	43	-23.6	-16.2
	61	b	EG	32.6	30.7	58	43	-25.4	-12.3
	٠,	~	1.OG	37	32.5	58	43	-21	-10.5
		С	EG	41	33.9	58	43	-17	-9.1
_			1.OG	43.4	35.3	58	43	-14.6	-7.7
		а	EG	28.9	27.3	58	43	-29.1	-15.7
			1.OG	33.7	29.1	58	43	-24.3	-13.9
	63	b	EG	35.6	31.8	58	43	-22.4	-11.2
			1.OG	39.9	32.9	58	43	-18.1	-10.1
		С	EG	39.1	33.2	58	43	-18.9	-9.8
Simonskaul -			1.OG	42.1	34.7	58	43	-15.9	-8.3
		а	EG	28.7	26.1	58	43	-29.3	-16.9
			1.OG	33.2	28.5	58	43	-24.8	-14.5
	65	b	EG	36.7	32.1	58	43	-21.3	-10.9
			1.0G	38.9	33.1	58	43	-19.1	-9.9
		С	EG	38.4	33.5	58	43	-19.6	-9.5
<u>-</u>			1.0G	40.6	34.3	58	43	-17.4	-8.7
		а	EG	27.6	27.2	58	43	-30.4	-15.8
			1.0G	32.5	28.8	58	43	-25.5	-14.2
	67	b	EG	38.8	31.2	58	43	-19.2	-11.8
			1.OG	40	32.5	58 50	43	-18	-10.5
		С	EG	37.5	32.9	58 50	43	-20.5	-10.1
_			1.OG	36.8	33.2	58	43	-21.2	-9.8
		а	EG 1.00	27.7	26.9	58 50	43	-30.3	-16.1
			1.OG	32.5	28.9	58 50	43	-25.5	-14.1
	69	b	EG	30.1	29.9	58 50	43	-27.9	-13.1
			1.OG	34.6	32.1	58 50	43	-23.4	-10.9
			EG	35.6	32.3	58	43	-22.4	-10.7
_			1.OG	37	33.2	58	43	-21	-9.8
		а	EG	25	16.9	58 50	43	-33	-26.1
	шинининини		1.OG	30.7	23.7	58 50	43	-27.3	-19.3
	71	b	EG	34.4	28.3	58	43	-23.6	-14.7
			1.OG	38.1	31.4	58 50	43	-19.9	-11.6
ı		С	EG	37.6	32.7	58 50	43	-20.4	-10.3
			1.OG	39.3	33.6	58	43	-18.7	-9.4

AUFTRAGGEBER: AUFTRAG-NR.: HW Weidenpesch ANLAGE-NR.: Kölner Verkehrs-Betriebe AG S 02.1127.13 Immissionspegel an der umliegenden Bebauung durch den Betrieb der Abstell-Scheidtweilerstraße 38 50933 Köln anlage und der HW Weidenpesch

1.4.7

Immissionsort			Etage	Immissi	onspegel	Immission	nsrichtwert	Differen	zpegel	
				L _r [d	B(A)]	L _{IRW} [0	dB(A)]	$\Delta L = L_r$	- L _{IRW}	
				Tag	Nacht	Tag	Nacht	Tag	Nacht	
			EG	24.5	16.9	58	43	-33.5	-26.1	
	70	а	1.OG	30.3	24.6	58	43	-27.7	-18.4	
	73		EG	37.1	32.8	58	43	-20.9	-10.2	
		b	1.OG	39.1	33.6	58	43	-18.9	-9.4	
			EG	36.5	28.8	58	43	-21.5	-14.2	
	75	а	1.OG	38.6	31.5	58	43	-19.4	-11.5	
	75		EG	36.9	32.8	58	43	-21.1	-10.2	
		b	1.OG	38.5	33.6	58	43	-19.5	-9.4	
			EG	37.3	33.5	58	43	-20.7	-9.5	
Simonskaul	77		1.OG	38.2	33.7	58	43	-19.8	-9.3	
•			EG	36.8	32.5	58	43	-21.2	-10.5	
		а	1.OG	39.6	35.6	58	43	-18.4	-7.4	
			EG	38.3	31.6	58	43	-19.7	-11.4	
		b	1.OG	39.5	35.4	58	43	-18.5	-7.6	
	Gewerbe		EG	38.2	34.7	58	43	-19.8	-8.3	
		С	1.OG	39.7	35.5	58	43	-18.3	-7.5	
			EG	31.9	33	58	43	-26.1	-10	
		d	1.OG	39.4	34.9	58	43	-18.6	-8.1	
			EG	37.6	29.1	55	40	-17.4	-10.9	
	1		1.OG	41.2	34.3	55 55	40	-13.8	-5.7	
			EG	46.2	33.8	55	40	-8.8	-6.2	
		а	1.OG	48	36	55 55	40	-0.0 -7	-0.2 -4	
		b	1.00	51.5	31.4	55 55	40	-7 -3.5	-8.6	
				53.9	33.5	55 55	40	-1.1	-6.5	
	2	d		44.2	29	55 55	40	-10.8	-0.5 -11	
		4	u	EG	35.4	20.1	55 55	40	-10.6 -19.6	-19.9
			е	1.OG	40.5	25.3	55 55	40	-14.5	-14.7
				EG	40.9	33.4	55 55	40	-14.5 -14.1	-6.6
		f	1.OG	44.3	35.2	55 55	40	-14.1	-0.0 -4.8	
			EG	39.7	30.2	55	40	-15.3	-9.8	
	3		1.OG	42.1	34.4	55 55	40	-13.3	-9.6 -5.6	
			EG	38.7	27.2	55	40			
		а	1.OG	42.5	34.1	55 55	40	-16.3 -12.5	-12.8	
Ctattings Ctr								•	-5.9	
Stettiner Str.		b	EG 1.00	37.6	26.6	55 55	40 40	-17.4	-13.4	
	4		1.OG	39.7	29.9	55 55	40	-15.3	-10.1	
		С	EG 1.00	42.6	33.6	55 55	40 40	-12.4	-6.4 5.3	
			1.OG	44.5	34.7	55 55	40	-10.5	-5.3	
		d	EG	46.6	37.1	55 55	40	-8.4	-2.9	
			1.OG	47.1	36.5	55	40	-7.9	-3.5	
	5		EG	37.8	29	55 55	40	-17.2	-11	
			1.OG	40.8	33.7	55	40	-14.2	-6.3	
		а	EG	39.8	33.4	55	40	-15.2	-6.6	
			1.OG	42.3	36.2	55 	40	-12.7	-3.8	
	6	b	EG	31.6	23.2	55	40	-23.4	-16.8	
		-	1.OG	38.3	28.3	55	40	-16.7	-11.7	
		С	EG	46.1	36	55	40	-8.9	-4	
			1.OG	48	36.8	55	40	-7	-3.2	
	7		EG	40	32.1	55	40	-15	-7.9	
Ī	•		1.OG	41.3	33.7	55	40	-13.7	-6.3	

AUFTRAGGEBER: AUFTRAG-NR.: HW Weidenpesch ANLAGE-NR.: Immissionspegel an der umliegenden Kölner Verkehrs-Betriebe AG S 02.1127.13 Bebauung durch den Betrieb der Abstell-Scheidtweilerstraße 38 50933 Köln anlage und der HW Weidenpesch

1.4.8

Book	Immissionsort			Etage	Immissi	onspegel	Immissior	nsrichtwert	Differen	zpegel
BEG 46.9 35.9 55 40 -8.1 -4.1					L _r [d	B(A)]	L _{IRW} [0	dB(A)]	$\Delta L = L_r$	- L _{IRW}
BEG 46.9 35.9 55 40 -8.1 -4.1					Tag	Nacht		1		-
8				EG		35.9		40		
8			а	1.OG	48.7	37.6	55	40	-6.3	-2.4
8			L	EG	45	35.8	55	40	-10	-4.2
1.0G			D	1.OG	46.7	36.7	55	40	-8.3	-3.3
1.0G		0	_	EG	30.3	27.6	55	40	-24.7	-12.4
1.0G		8	С	1.OG		30.1		40	-17.4	-9.9
1,0G				EG	41.3	33.9	55	40	-13.7	-6.1
1.0G			u	1.OG	44.3	36	55	40	-10.7	-4
1.0G				EG	46.4		55	40	-8.6	-3.8
BEG			е	1.OG	48.3	36.9	55	40	-6.7	-3.1
Stettiner Str. A	_									
Stettiner Str.			а							
10									å	
The standard Content of the			b							
10							A			
Stettiner Str. 10			С							
Image: Station of the properties of the propertie		10								
Stettiner Str. e EG 36.3 33.6 55 40 -18.7 -6.4 -13.5 -4.4 -13.5 -13.5 -4.4 -14.2 -6.6 -14.2 -6.6 -14.2 -6.6 -14.2 -6.6 -15.5 -4.6 -14.2 -6.6 -15.5 -4.6 -15.5 -4.6 -17.5 -4.9 -17.5 -4.9 -17.5 -4.9 -17.5 -4.9 -17.5 -4.9 -17.5 -4.4 -17.5 -4.4 -17.5 -4.4 -17.5 -4.4 -17.5 -4.4 -17.5 -4.4 -17.5 -4.4 -17.5 -4.4 -17.5 -4.4 -17.5 -4.8 -17.5 -4.8 -17.5 -4.8 -17.5 -4.8 -17.5 -4.8 -17.5 -4.8 -17.5 -4.8 -17.5 -4.8 -17.5 -4.8 -17.5 -4.8 -17.5 -4.8 -17.5 -4.8 -17.5 -4.8 -17.5 -4.8 -17.5 -4.5 -4.5 -17.5 -4.5 -17.5 -4.5 -4.5 -17.5 -4.5			d							
Stettiner Str. Fig. Fig.							•		•	
Fed 47 36.1 55 40 -8 -3.9 1.0G 49.4 37.1 55 40 -5.6 -2.9 11 EG 37.8 32.7 55 40 -17.2 -7.3 11 EG 36.3 32.1 55 40 -14.2 -6.6 5 EG 36.3 32.1 55 40 -18.7 7.9 1.0G 38 33.5 55 40 -18.7 7.9 1.0G 45.2 36.8 55 40 -12 -4.9 12 EG 33.9 29.6 55 40 -12.1 -10.4 12 EG 33.9 29.6 55 40 -12.5 -4.4 12 EG 35.9 28.5 55 40 -10.5 -4.4 12 EG 35.9 28.5 55 40 -10.5 -4.8 10G 45.4 36.1 55 40 -10.5 -4.8 10G 45.4 36.1 55 40 -10.5 -4.8 13 EG 32.6 26.8 55 40 -10.5 -4.8 13 EG 32.6 26.8 55 40 -10.5 -4.8 14 EG 32.6 26.8 55 40 -10.5 -4.8 15 1.0G 45.4 36.1 55 40 -10.5 -4.8 16 EG 32.6 26.8 55 40 -10.5 -4.8 17 EG 32.6 26.8 55 40 -10.5 -4.8 18 EG 32.6 26.8 55 40 -10.5 -4.8 19 EG 32.6 26.8 55 40 -10.5 -4.8 10 44.7 36.6 55 40 -10.3 -3.4 14 EG 35.9 31.2 55 40 -10.3 -3.4 15 EG 37.2 34.2 55 40 -10.3 -3.4 16 EG 41.6 35 55 40 -11.2 -3.3			е							
Stettiner Str. 1							•		•	
Stettiner Str. 11			f							
Stettiner Str. 11	_									
Stettiner Str. b EG 36.3 32.1 55 40 -18.7 -7.9			а							
Stetuner Str. D 1.0G 38 33 55 40 -17 -7		11				I	.		8	
12	Stettiner Str.		b							
12	_									
12			а							
12							•		•	
C EG 35.9 28.5 55 40 -19.1 -11.5 -4.8 d EG 43.3 34.6 55 40 -10.5 -4.8 13 EG 43.3 34.6 55 40 -9.6 -3.9 13 EG 32.6 26.8 55 40 -9.6 -3.9 14 EG 32.6 26.8 55 40 -9.6 -3.9 15 1.0G 36.9 32.9 55 40 -18.1 -7.1 16 EG 42 34.6 55 40 -18.1 -7.1 16 EG 35.9 31.2 55 40 -10.3 -3.4 16 EG 35.9 31.2 55 40 -11.5 -3.9 16 EG 37.2 34.2 55 40 -11.5 -3.8 16 EG 41.6 35 55 40 -13			b							
C 1.0G 44.5 35.2 55 40 -19.1 -11.5 EG		12					•			
1.0G			С							
13							•		†	
1.0G			d							
13	_									
1.0G 36.9 32.9 55 40 -18.1 -7.1 a EG 42 34.6 55 40 -13 -5.4 1.0G 44.7 36.6 55 40 -10.3 -3.4 b EG 35.9 31.2 55 40 -19.1 -8.8 1.0G 43.5 36.1 55 40 -11.5 -3.9 c EG 37.2 34.2 55 40 -11.2 -3.3 d EG 41.6 35 55 40 -11.2 -3.3 d EG 41.6 35 55 40 -10.1 -3.1 a EG 41.1 34.6 55 40 -10.1 -3.1 a EG 41.1 34.6 55 40 -12.1 -4.6 b EG 37.7 27.3 55 40 -17.3 -12.7 1.0G 41.4 30.5 55 40 -13.6 -9.5 EG 38.9 28.5 55 40 -16.1 -11.5		13								
14 1.0G	_									
1.0G			a							
14			u				•		•	-3.4
14			h							
C 1.OG 43.8 36.7 55 40 -11.2 -3.3 EG 41.6 35 55 40 -13.4 -5 1.OG 44.9 36.9 55 40 -10.1 -3.1 EG 41.1 34.6 55 40 -13.9 -5.4 1.OG 42.9 35.4 55 40 -12.1 -4.6 EG 37.7 27.3 55 40 -17.3 -12.7 1.OG 41.4 30.5 55 40 -13.6 -9.5 EG 38.9 28.5 55 40 -16.1 -11.5		1/	U		43.5	36.1	55	40	-11.5	-3.9
1.0G		14		EG	37.2	34.2	55	40	-17.8	-5.8
16 BG 37.7 27.3 55 40 -10.1 -3.1 EG 38.9 36.9 55 40 -10.1 -3.1 -3.1 BG 42.9 35.4 55 40 -12.1 -4.6 BG 41.4 30.5 55 40 -13.6 -9.5 BG 38.9 28.5 55 40 -16.1 -11.5			C	1.OG	43.8	36.7	55	40	-11.2	-3.3
1.0G 44.9 36.9 55 40 -10.1 -3.1 a EG 41.1 34.6 55 40 -13.9 -5.4 1.0G 42.9 35.4 55 40 -12.1 -4.6 b EG 37.7 27.3 55 40 -17.3 -12.7 1.0G 41.4 30.5 55 40 -13.6 -9.5 C EG 38.9 28.5 55 40 -16.1 -11.5			٦	EG	41.6	35	55	40	-13.4	-5
16 EG			u	1.OG	44.9	36.9	55	40	-10.1	-3.1
16 B G 37.7 27.3 55 40 -12.1 -4.6 B G 37.7 27.3 55 40 -17.3 -12.7 1.0G 41.4 30.5 55 40 -13.6 -9.5 C EG 38.9 28.5 55 40 -16.1 -11.5	_		_	EG	41.1	34.6	55	40		-5.4
16 b EG 37.7 27.3 55 40 -17.3 -12.7 1.0G 41.4 30.5 55 40 -13.6 -9.5 EG 38.9 28.5 55 40 -16.1 -11.5			а	1.OG		35.4		40	-12.1	-4.6
16 b 1.OG 41.4 30.5 55 40 -13.6 -9.5 EG 38.9 28.5 55 40 -16.1 -11.5		40	L_				•		•	
EG 38.9 28.5 55 40 -16.1 -11.5		16	b							
$^{\circ}$							•		•	
			С	1.OG	42	33.1	55	40	-13	-6.9

AUFTRAGGEBER:
Kölner Verkehrs-Betriebe AG
Scheidtweilerstraße 38
50933 Köln

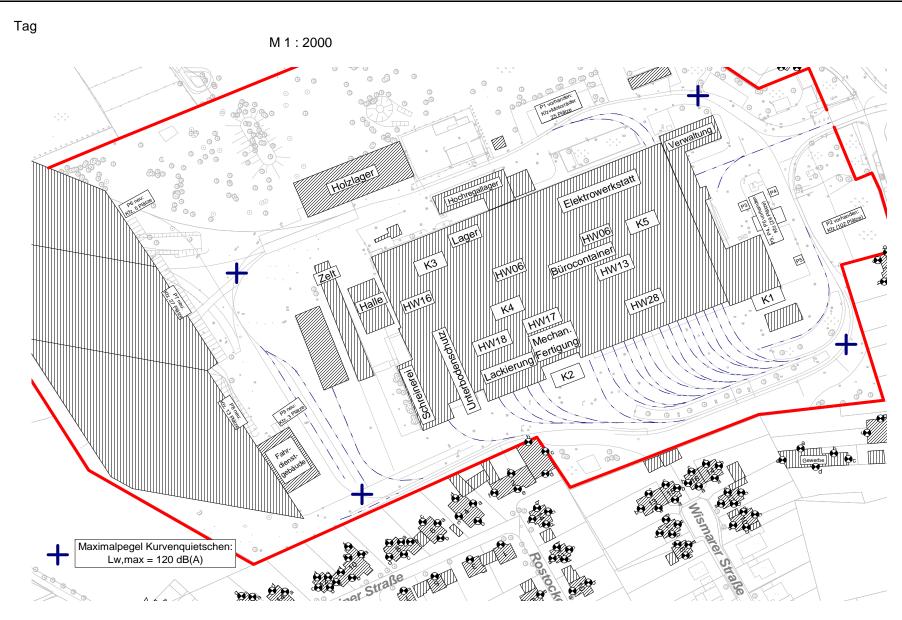
AUFTRAG-NR.:
HW Weidenpesch
Immissionspegel an der umliegenden
Bebauung durch den Betrieb der Abstellanlage und der HW Weidenpesch

Immissionsort			Etage	Immissio	onspegel	Immissior	nsrichtwert	Differen	zpegel
				L _r [d	B(A)]	L _{IRW} [0	dB(A)]	$\Delta L = L_r$	- L _{IRW}
				Tag	Nacht	Tag	Nacht	Tag	Nacht
		٦	EG	35.2	24	55	40	-19.8	-16
		d	1.OG	38.4	27.4	55	40	-16.6	-12.6
			EG	32.9	23.7	55	40	-22.1	-16.3
Stettiner Str.	16	е	1.OG	37.3	30.2	55	40	-17.7	-9.8
Stettiner Str.	10	f	EG	33.7	33.5	55	40	-21.3	-6.5
		ı	1.OG	39.1	34.4	55	40	-15.9	-5.6
		~	EG	37.1	34.3	55	40	-17.9	-5.7
		g	1.OG	40.9	35.1	55	40	-14.1	-4.9
			EG	34.9	23.2	55	40	-20.1	-16.8
		а	1.OG	39	26.7	55	40	-16	-13.3
	0	L	EG	25.3	13.7	55	40	-29.7	-26.3
	9	b	1.OG	32	20.4	55	40	-23	-19.6
			EG	37.3	23.9	55	40	-17.7	-16.1
		С	1.OG	39.9	29.8	55	40	-15.1	-10.2
			EG	33.5	25	55	40	-21.5	-15
		а	1.OG	37.3	28.8	55	40	-17.7	-11.2
			EG	25.7	13.6	55	40	-29.3	-26.4
		b	1.OG	32.7	20.3	55	40	-22.3	-19.7
	10		EG	39.1	26.6	55	40	-15.9	-13.4
		С	1.OG	41.6	29.3	55	40	-13.4	-10.7
			EG	41.4	23.7	55	40	-13.6	-16.3
		d	1.OG	43.2	30.3	55	40	-11.8	-9.7
_			EG	36.2	22.8	55	40	-18.8	-17.2
		а	1.OG	39.9	27.7	55	40	-15.1	-12.3
			EG	32.3	27.3	55	40	-22.7	-12.7
		b	1.OG	37.2	29.1	55	40	-17.8	-10.9
	11		EG	37.9	28.5	55	40	-17.1	-11.5
		С	1.OG	40.3	30.1	55	40	-14.7	-9.9
			EG	34.9	21.7	55 55	40	-20.1	-18.3
Wismarer Str.		d	1.OG	40.4	30	55	40	-14.6	-10
_			EG	33.9	25.4	55	40	-21.1	-14.6
		а	1.OG	38.6	30.1	55	40	-16.4	-9.9
			EG	32.6	21.8	55	40	-22.4	-18.2
		b	1.OG	38.1	29.1	55	40	-16.9	-10.9
	12		EG	40.5	25.4	55	40	-14.5	-14.6
		С	1.OG	43	30.8	55	40	-12	-9.2
			EG	39.4	27.9	55	40	-15.6	-12.1
		d	1.OG	43.2	32	55 55	40	-11.8	-8
_			EG	31.3	17.3	55	40	-23.7	-22.7
		а	1.OG	37.4	23.6	55 55	40	-17.6	-22.7 -16.4
			EG	40.3	29 29	55	40	-17.0 -14.7	-10.4
	13	b	1.0G	40.3	30.1	55 55	40	-14.7	-9.9
			EG	44.3	30.1	55 55	40	-10.7	-9.9 -9.1
		С	1.0G	44.3 45.7	30.9	55 55	40	-10.7 -9.3	-9.1 -7.3
_			EG	34.2	24.3	55	40	-9.3	-7.3 -15.7
		а							
			1.OG	39.3	28.6	55 55	40 40	-15.7	-11.4 o
	14	b	EG 1.0G	44.8 45.5	32	55 55	40 40	-10.2	-8 7
			1.OG	45.5	33	55 55	40	-9.5	-7 7.0
		С	EG	46.2	32.7	55 55	40	-8.8	-7.3
			1.OG	47.6	34.6	55	40	-7.4	-5.4

AUFTRAGGEBER:
Kölner Verkehrs-Betriebe AG
Scheidtweilerstraße 38
50933 Köln

AUFTRAG-NR.:
S 02.1127.13
Immissionspegel an der umliegenden
Bebauung durch den Betrieb der Abstellanlage und der HW Weidenpesch

ANLAGE-NR.:
1.4.10


Immissionsort			Etage	Immission	onspegel	Immission	nsrichtwert	Differen	zpegel
				L_r [dB(A)]		$L_{IRW}[dB(A)]$		$\Delta L = L_r - L_{IRW}$	
				Tag	Nacht	Tag	Nacht	Tag	Nacht
		•	EG	31.2	16	55	40	-23.8	-24
		а	1.OG	37.2	22	55	40	-17.8	-18
	15	b	EG	39.8	27.4	55	40	-15.2	-12.6
	13	D	1.OG	43.4	30.7	55	40	-11.6	-9.3
			EG	43	29.9	55	40	-12	-10.1
Wismarer Str. —		С	1.OG	44.8	32.2	55	40	-10.2	-7.8
Wisinarei Sti. —		а	EG	34.9	16.8	55	40	-20.1	-23.2
		а	1.OG	38.5	22.6	55	40	-16.5	-17.4
	16	b	EG	38.2	28.7	55	40	-16.8	-11.3
	10	D	1.OG	42	31.7	55	40	-13	-8.3
			EG	44.7	32.9	55	40	-10.3	-7.1
		С	1.OG	46.3	34.9	55	40	-8.7	-5.1

AUFTRAGGEBER:
Kölner Verkehrs-Betriebe AG
Scheidtweilerstraße 38 50933 Köln
50933 Köln

AUFTRAG-NR.: S 02.1127.13

HW Weidenpesch Lagepläne Lage der Gleisabschnitte mit Maximalpegeln durch Kurvenquietschen ANLAGE-NR.:

2.1

AUFTRAG-NR.: S 02.1127.13

HW Weidenpesch
Maximalpegel
durch Kurvenquietschen
an der umliegenden Bebauung

ANLAGE-NR.: 2.2.1

Immissionsort			Etage	Maximalpegel L _{max}	Immissionsrichtwert
					$L_{IRW}[dB(A)]$
				Tag	Tag
			EG	64.4	85
	50		1.OG	68	85
			2.OG	69.3	85
			EG	64.1	85
	52		1.OG	67.7	85
			2.OG	69.7	85
			EG	62.3	85
	54		1.OG	67.3	85
			EG	67.4	85
	56		1.OG	68.9	85
				67.2	85
Ginsterpfad	58		EG		
			1.0G	68.3	85
	60		EG	67.4	85
			1.OG	68.7	85
	62		EG	67.6	85
			1.OG	68.9	85
		а	EG	68.4	85
			1.OG	69.5	85
	64	b	EG	73.7	85
	0-1	· ·	1.OG	73.9	85
		С	EG	73.4	85
		C	1.OG	73.5	85
			EG	49	85
			1.OG	49	85
		а	2.OG	49.8	85
			3.OG	57.4	85
	11		EG	55.4	85
			1.OG	56.2	85
	5	b	2.OG	58.6	85
			3.OG	60.5	85
			EG EG	58.8	85
			1.OG	63.6	85
		С		69.4	
			2.OG		85
			3.OG	71.1	85
		а	EG	52.9	85
	ıı.		1.OG	58.9	85
Mönchsgasse	7	b	EG	59.8	85
J	u	C	EG	75	85
		d	EG	76.1	85
		е	EG	75.2	85
			EG	52.1	85
		а	1.OG	52.3	85
	9		2.OG	59.6	85
	J "		EG	73.8	85
		b	1.OG	75.8	85
			2.OG	73.6	85
			EG	51.2	85
		а	1.OG	51.3	85
	4.4		2.OG	58.2	85
	11 -		EG	75.1	85
		b	1.OG	76.2	85
		~	2.OG	74.3	85
			2.00	17.5	1 00

AUFTRAG-NR.: S 02.1127.13

HW Weidenpesch
Maximalpegel
durch Kurvenquietschen
an der umliegenden Bebauung

ANLAGE-NR.: 2.2.2

Immissionsort			Etage	Maximalpegel L _{max}	Immissionsrichtwei
					$L_{IRW}[dB(A)]$
				Tag	Tag
			EG	52.5	85
		а	1.OG	52.7	85
	12		2.OG	59.7	85
	13		EG	77.6	85
		b	1.OG	77.6	85
			2.OG	77.5	85
			EG	55.2	85
		а	1.OG	62.2	85
	15		EG	79.2	85
		b	1.OG	79.1	85
				61.1	85
		а	EG 4.00		
	17		1.OG	64.1	85
		b	EG	80.2	85
			1.OG	80.1	85
		а	EG	55	85
	19		1.OG	61.8	85
		b	EG	79.4	85
			1.OG	79.3	85
		а	EG	65	85
	21		1.OG	66.2	85
	21		EG	77.5	85
		b	1.OG	77.5	85
			EG	64.3	85
		а	1.OG	65.5	85
		-	EG	58.1	85
	22	b	1.OG	61.3	85
Mönchsgasse			EG	49.6	85
		С		55.7	85
			1.OG		
		а	EG	63.2	85
			1.OG	65	85
	23	b	EG	65.6	85
			1.OG	66.9	85
		С	EG	75.6	85
			1.OG	75.5	85
			EG	64.7	85
	24		1.OG	65.7	85
	_		2.OG	68.1	85
			EG	65.3	85
	26		1.OG	66.3	85
			2.OG	68.3	85
			EG	62.7	85
		а	1.OG	65.2	85
		۵.	2.OG	68.5	85
			EG	64.2	85
	27	b		65.6	85
	۷1	D	1.0G		
	mm		2.OG	67.9	85
			EG	60.5	85
_		С	1.OG	60.2	85
			2.OG	57.1	85
		8	EG	65.7	85
	28		1.OG	66.4	85
			2.OG	68.3	85

AUFTRAG-NR.: S 02.1127.13

HW Weidenpesch Maximalpegel durch Kurvenquietschen an der umliegenden Bebauung **ANLAGE-NR.:** 2.2.3

Immissionsort			Etage	Maximalpegel L _{max}	Immissionsrichtwert	
					$L_{IRW}[dB(A)]$	
				Tag	Tag	
			EG	68.1	85	
		а	1.OG	65	85	
			2.OG	67.7	85	
			EG	48.7	85	
	29	b	1.OG	52.9	85	
			2.OG	58.4	85	
			EG	48.7	85	
		С	1.OG	48.9	85	
			2.OG	55.4	85	
			EG	65.9	85	
	30		1.OG	66.8	85	
			2.OG	68.5	85	
	-		EG	67	85	
		а	1.OG	67.5	85	
	00		2.OG	68.6	85	
	30a		EG	66.4	85	
		b	1.OG	66.4	85	
Mönchsgasse			2.OG	66.7	85	
			EG	68	85	
		а	1.OG	68.7	85	
			EG	64.6	85	
	32	b	1.OG	66.2	85	
			EG	54.2	85	
		С	1.OG	58.7	85	
			EG	67.3	85	
		а	1.0G	67.4	85	
			EG	58.4	85	
	34	b	1.OG	61.3	85 85	
			EG	55.3	85	
		С	1.OG	58.7	85 85	
			EG	73.6	85	
	<u> </u>	a b	EG	73.8	.	
	Gewerb			70.6	85 85	
	-	C	EG EG	72.5	85 85	
	Ğ	d		62.7	85	
		е	EG	64.7	85	
		а	EG 1.00	60.8	85	
	9		1.OG	63.5	85 85	
		b	EG 1.00	58.9	85 85	
			1.OG EG	62.6	85	
		а		62	85 85	
	10		1.OG	64.2	85 85	
		b	EG 4.00	58.3	85 85	
Rostocker Str.			1.0G	61.9	85	
		а	EG	65	85 05	
	1111111		1.OG	66.5	85	
		b	EG	66.1	85 05	
	12		1.OG	67.1	85	
		С	EG	62.4	85	
			-	1.OG	63.6	85
		d	EG	55.6	85	
			1.OG	60.3	85	

AUFTRAG-NR.: S 02.1127.13

HW Weidenpesch
Maximalpegel
durch Kurvenquietschen
an der umliegenden Bebauung

ANLAGE-NR.: 2.2.4

Immissionsort			Etage	Maximalpegel L _{max}	Immissionsrichtwert
					$L_{IRW}[dB(A)]$
				Tag	Tag
			EG	61.5	85
		а	1.OG	65.5	85
	•••••	b	EG	64	85
Rostocker Str.	14		1.OG	66.1	85
NOSIOCKEI OII.	17	С	EG	62.7	85
		C	1.OG	63.7	85
		d	EG	59.4	85
		<u> </u>	1.OG	62.8	85
		а	EG	53.3	85
			1.OG	60.3	85
		b	EG	43.1	85
	10		1.OG	48.8	85
	. •	С	EG	46.5	85
			1.OG	52.3	85
		d	EG	50.4	85
		-	1.OG	53.7	85
		а	EG	58.2	85
			1.OG	60.9	85
	12	b	EG	50.4	85
			1.OG	52.5	85
		С	EG	56.6	85
			1.0G	59.7	85
		а	EG	58.3	85
	16		1.OG	62.2	85
		b	EG	51.2	85
			1.OG	57.1	85
		а	EG 4.00	61.4 61	85 85
	17a		1.OG EG		
Simonskaul		b	1.OG	50.8	85 85
			EG	56 62.1	85 85
	17b				
	-		1.OG EG	61.7 57.1	85 85
	18		1.OG	61.9	85
			EG	62.9	85
	19		1.OG	62.6	85 85
	-		EG	56.1	85
	20		1.OG	61.9	85
			EG	64.3	85
	21		1.OG	64.2	85
			EG	55.3	85
	22		1.OG	61.8	85
	-	_	EG	59.7	85
		а	1.OG	64.2	85
	0.4	1.	EG	57.7	85
	24	b	1.OG	62.7	85
			EG	47.3	85
		С	1.OG	56.4	85
			EG	65.7	85
	34		1.OG	69.7	85

AUFTRAG-NR.: S 02.1127.13

HW Weidenpesch Maximalpegel durch Kurvenquietschen an der umliegenden Bebauung **ANLAGE-NR.:** 2.2.5

Immissionsort			Etage	Maximalpegel L _{max}	Immissionsrichtwert
11111113310113011			Liage	Maximalpeger L _{max}	L _{IRW} [dB(A)]
				Tog	
			EG	Tag 61.6	Tag 85
		а	1.OG	65.3	85 85
			EG	60.7	85
	36	b	1.OG	63	85
					85
		С	EG 4.00	55.8	
			1.0G	59.3	85
		а	EG	58.8	85 85
			1.OG	63.3	
	38	b	EG	63.7	85 05
			1.OG	67.1	85
		С	EG	55.7	85
			1.OG	60	85
		а	EG	54.3	85
			1.OG	61	85
		d	EG	73.4	85
	45		1.OG	75.9	85
		b	EG	66.3	85
			1.OG	69.6	85
		С	EG	73.6	85
			1.OG	76	85
		а	EG	57.5	85
	47	<u>~</u>	1.OG	63.9	85
		b	EG	63.8	85
			1.OG	68.8	85
Simonskaul		С	EG	74.9	85
			1.0G	77.6	85
		а	EG	58.6	85
	ııı		1.OG	63.6	85
	49	b	EG	70.2	85
		С	EG	73.2	85
			1.0G	78.7	85
		а	EG	62.9	85
		u	1.OG	74.4	85
	51	b	EG	73.7	85
	J1	D	1.OG	76.7	85
		С	EG	74.7	85
			1.OG	77.6	85
		а	EG	62.6	85
	1000	u	1.OG	74.1	85
	53	b	EG	64.4	85
	JJ	2	1.OG	75.8	85
		С	EG	74.2	85
			1.0G	77.1	85
		а	EG	59.6	85
		а	1.OG	64.2	85
	55	b	EG	71.9	85
	JU	Ŋ	1.OG	73.6	85
	IIIII		EG	73.4	85
		С	1.OG	75.7	85

AUFTRAG-NR.: S 02.1127.13

HW Weidenpesch Maximalpegel durch Kurvenquietschen an der umliegenden Bebauung **ANLAGE-NR.:** 2.2.6

Immissionsort			Etage	Maximalpegel L _{max}	Immissionsrichtwert
111111111111111111111111111111111111111			Liage	I waxii i aipegei L _{max}	L _{IRW} [dB(A)]
				Ton	
			EG	Tag 60.3	Tag 85
		а	1.OG		85
	mm			64.7	•
	57	b	EG	67.3	85
			1.OG	64	85
		С	EG	59.3	85 05
			1.OG	68	85
		а	EG	54.9	85
			1.OG	60.6	85
	59	b	EG	67.2	85
			1.OG	71.2	85
		С	EG	68.4	85
			1.0G	71.8	85
		а	EG	56.5	85
			1.OG	61	85
	61	b	EG	55.6	85
			1.OG	62.1	85
		С	EG	67.9	85
			1.OG	70.9	85
		а	EG	52	85
		<u> </u>	1.OG	59.2	85
	63	b	EG	58.2	85
			1.OG	66.2	85
		С	EG	64.4	85
Simonskaul			1.0G	68.6	85
Oimonakaar		а	EG	50.9	85
			1.OG	58.9	85
	65	b	EG	64.3	85
	0.5	D	1.OG	66.5	85
		С	EG	62.9	85
		C	1.0G	67.7	85
			EG	49	85
		а	1.OG	57.1	85
	67	h	EG	65.4	85
	07	b	1.OG	67.3	85
	IIIIII		EG	64.5	85
		С	1.OG	62.8	85
		_	EG	49.5	85
		а	1.OG	57.7	85
	~~		EG	52.3	85
	69	b	1.OG	59.4	85
	111111		EG	56.1	85
		С	1.OG	61.4	85
			EG	47.4	85
		а	1.OG	55.5	85
			EG	54.7	85
	71	b	1.OG	63.4	85
			EG	64.6	85
		С	1.OG	66.6	85
<u></u>			1.00	1 00.0	

AUFTRAG-NR.: S 02.1127.13

HW Weidenpesch Maximalpegel durch Kurvenquietschen an der umliegenden Bebauung **ANLAGE-NR.:** 2.2.7

mmissionsort			Etage	Maximalpegel L _{max}	Immissionsrichtwe
					$L_{IRW}[dB(A)]$
				Tag	Tag
			EG	46.8	85
	73	а	1.OG	54.7	85
	73 -		EG	62.7	85
		b	1.OG	66.4	85
			EG	62.7	85
	75	а	1.OG	65.4	85
	75 -		EG	63.4	85
		b	1.OG	65.8	85
Cimanalard	77		EG	64.5	85
Simonskaul	77		1.OG	65.5	85
			EG	62.2	85
		а	1.OG	65.6	85
	11111		EG	63.4	85
		b	1.OG	65.2	85
	ewer⊩		EG	63.3	85
		С	1.OG	65.4	85
	11111		EG	57.2	85
		d	1.OG	65.4	85
			EG	65.2	85
	1		1.OG	67.6	85
			EG	67.5	85
		а	1.OG	69.7	85
		h	1.00		85
		b		69.7	
	2 ""	C		66.1	85 85
	2	d	ΓΛ	66.4	
		е	EG 4.00	62.7	85
	11111		1.OG	66.1	85
		f	EG	69.3	85
			1.OG	72.8	85
	3		EG	70.3	85
			1.OG	71.1	85
		а	EG	62.8	85
			1.OG	67.5	85
Stettiner Str.		b	EG	63.6	85
	4		1.OG	65.2	85
	-	С	EG	74.3	85
			1.OG	74.6	85
		d	EG	77.2	85
			1.OG	75.2	85
	5		EG	63.6	85
			1.OG	68	85
		а	EG	67	85
		u	1.OG	69.1	85
	6	b	EG	59.6	85
	· ·	D	1.OG	65.6	85
	IIIII		EG	78.8	85
		С	1.OG	78.8	85
	7		EG	69	85
	1		1.OG	70.5	85

AUFTRAG-NR.: S 02.1127.13

HW Weidenpesch Maximalpegel durch Kurvenquietschen an der umliegenden Bebauung **ANLAGE-NR.:** 2.2.8

Immissionsort			Etage	Maximalpegel L _{max}	Immissionsrichtwert
					$L_{IRW}[dB(A)]$
				Tag	Tag
		2	EG	81	85
		а	1.OG	81.1	85
		b	EG	78.5	85
		D	1.OG	78.7	85
	8	С	EG	59	85
			1.OG	65.5	85
		d	EG	75.5	85
			1.OG	76.2	85
		е	EG	81.2	85 05
			1.OG	81.2	85
		а	EG	79.4	85 85
			1.0G	79.4	85
		b	EG 4.00	55.5	85 85
			1.OG EG	61.8 61.9	85
		С	1.OG	66.5	85 85
	10		EG	71.5	85
		d	1.OG	73.3	85 85
			EG	73.3	85
		е	1.OG	70.9	85
			EG	80.6	85
		f	1.OG	80.6	85
			EG	69.8	85
		а	1.OG	71.5	85
0	11		EG	61.6	85
Stettiner Str.		b	1.OG	65.2	85
			EG	75.2	85
		а	1.OG	75.7	85
	***************************************	h	EG	63.2	85
	12	b	1.OG	72	85
	12 """	C	EG	66.9	85
		С	1.OG	74.6	85
	.11111	d	EG	76	85
		u	1.OG	76.2	85
	13		EG	63.5	85
			1.0G	66.8	85
		а	EG	72.4	85
		<u>~</u>	1.OG	74.2	85
		b	EG	66.4	85
	14		1.OG	73.3	85
		С	EG	66.8	85 05
			1.OG	73.2	85
		d	EG 4.00	72.8	85 85
			1.0G	73.8	85 85
		а	EG	70.5	85
			1.0G	71.6	85 85
	16	b	EG 1.00	64	85 85
			1.OG	69.8	85 85
		С	EG 1 OG	69	85 85
			1.OG	70.9	85

AUFTRAG-NR.: S 02.1127.13

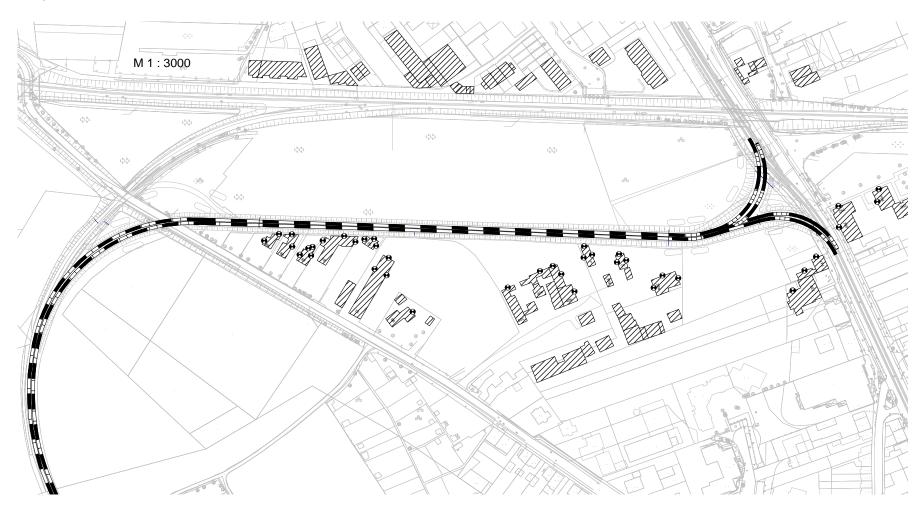
HW Weidenpesch Maximalpegel durch Kurvenquietschen an der umliegenden Bebauung **ANLAGE-NR.:** 2.2.9

Immissionsort			Etage	Maximalpegel L _{max}	Immissionsrichtwert
			g.	1 3 max	L _{IRW} [dB(A)]
				Tag	
			EG	66.3	Tag 85
		d	1.OG	69.6	85
	iii		EG	68	85
		е	1.OG	69	85
Stettiner Str.	16		EG	68.2	85
		f	1.OG	69.5	85
	ш		EG	69.6	85
		g	1.OG	71	85 85
			EG	59.6	85
		а	1.OG	64.5	85
	iii		EG	48.5	85
	9	b	1.OG	56.1	85 85
	m		EG	64.1	85
		С	1.OG	65.9	85 85
			EG	57.8	85
		а	1.OG	61.5	85
	ııı		EG	50.2	85
		b		50.2 57.8	85
	10		1.0G		L
		С	EG	66.9	85
			1.OG	68	85
		d	EG	70.1	85 05
			1.OG	70.5	85
		а	EG	64.6	85
	ııı		1.OG	65.8	85
		b	EG	52.5	85
	11 -		1.OG	59.4	85
		С	EG	58.2	85
	m		1.OG	61.7	85
Wismarer Str.		d	EG	62.5	85 25
			1.OG	65.6	85
		а	EG	59.5	85
			1.OG	62.2	85
		b	EG	60.1	85
	12 -		1.OG	62.9	85
		С	EG	68.7	85 25
	m		1.OG	69.4	85
		d	EG	64.5	85
			1.OG	69.4	85
		а	EG	56.2	85
	ııı		1.OG	61.7	85
	13	b	EG	58.4	85 25
	m		1.OG	61.3	85
		С	EG	66.9	85
			1.OG	67.5	85
		а	EG	57.6	85
	···		1.OG	63.3	85
	14	b	EG	69.4	85
	-		1.OG	69.7	85
		С	EG	69.6	85
		-	1.OG	70.1	85

AUFTRAG-NR.: S 02.1127.13

HW Weidenpesch Maximalpegel durch Kurvenquietschen an der umliegenden Bebauung **ANLAGE-NR.:** 2.2.10

Immissionsort			Etage	Maximalpegel L _{max}	Immissionsrichtwert
					$L_{IRW}[dB(A)]$
				Tag	Tag
		а	EG	49.9	85
		а	1.OG	57.7	85
	15	b	EG	62	85
		-	1.OG	66.8	85
			EG	67.4	85
Wismarer Str.		С	1.OG	67.9	85
Wisilialei Sti.		а	EG	55.6	85
		а	1.OG	62.4	85
	16	L	EG	59.1	85
		b	1.OG	65.2	85
			EG	69.1	85
		С	1.OG	69.5	85


AUFTRAG-NR.: S 02.1127.13

HW Weidenpesch Zulaufstrecke von Norden, Anbindung an die Neusser Straße ANLAGE-NR.:

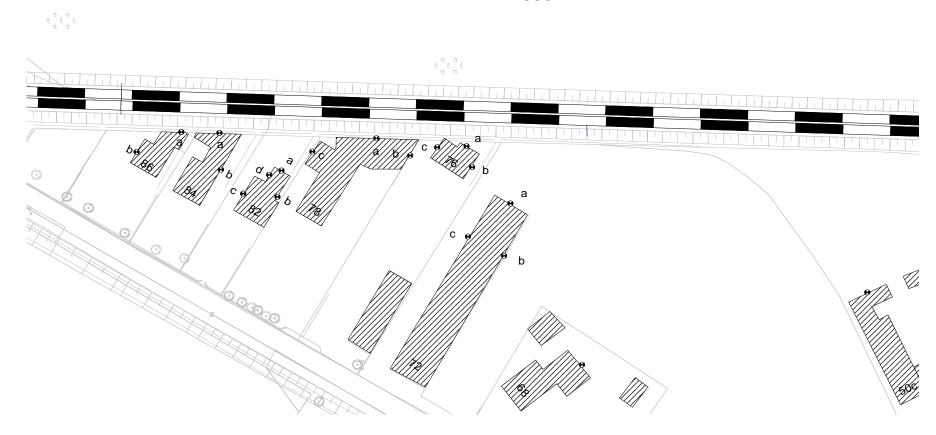
3.1.1

Lagepläne

Übersichtsplan

1127-G6 A.xlsx / a3.1

AUFTRAGGEBER: Kölner Verkehrs-Betriebe AG Scheidtweilerstraße 38
Kölner Verkehrs-Betriebe AG
Scheidtweilerstraße 38
50933 Köln

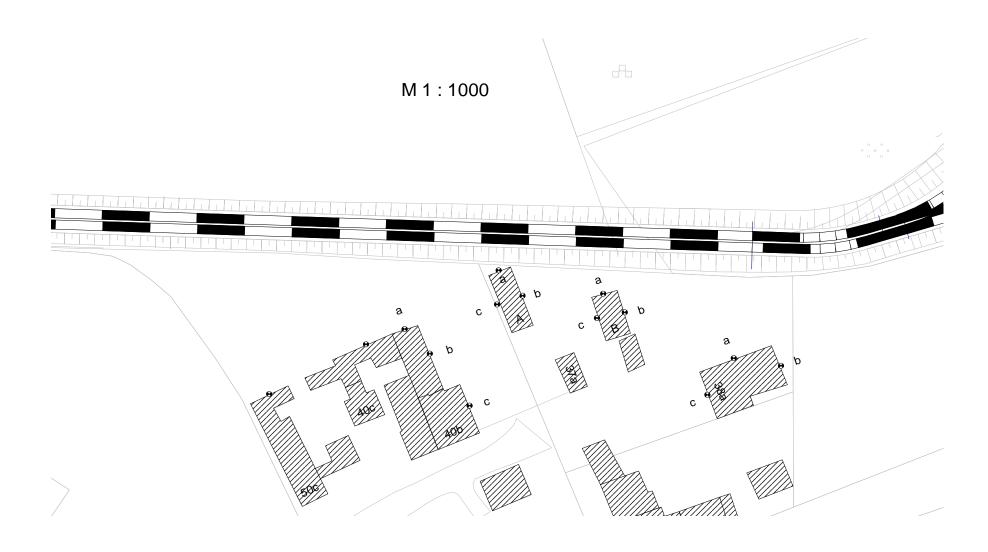

AUFTRAG-NR.:
S 02 1127 13

HW Weidenpesch Zulaufstrecke von Norden, Anbindung an die Neusser Straße ANLAGE-NR.:

3.1.2

Lagepläne

M 1:1000

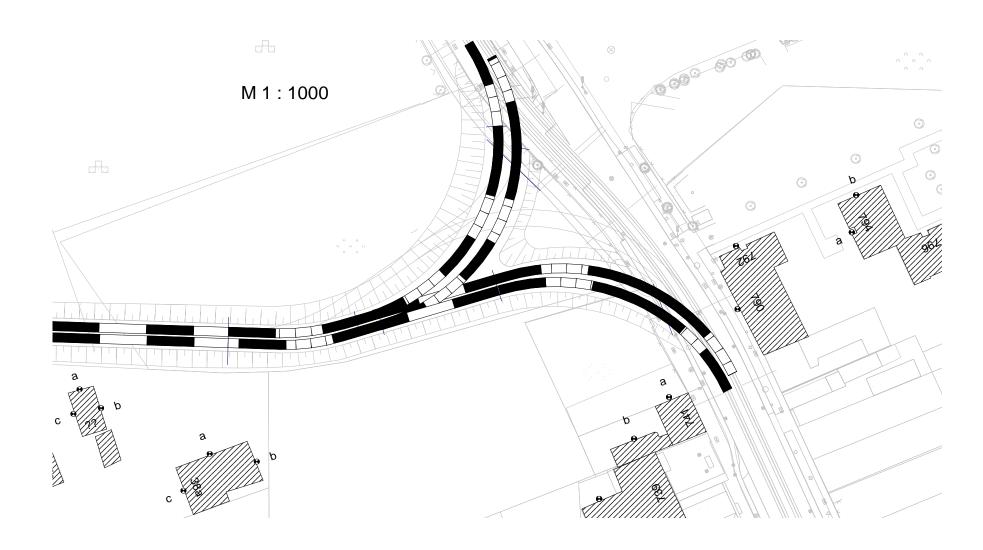

AUFTRAGGEBER:
AUFTRAGGEBER: Kölner Verkehrs-Betriebe AG
Scheidtweilerstraße 38
50933 Köln

AUFTRAG-NR.: S 02.1127.13

HW Weidenpesch Zulaufstrecke von Norden, Anbindung an die Neusser Straße ANLAGE-NR.:

3.1.3

Lagepläne


AUFTRAGGEBER:
Kölner Verkehrs-Betriebe AG Scheidtweilerstraße 38
Scheidtweilerstraße 38
50933 Köln

AUFTRAG-NR.: S 02.1127.13

HW Weidenpesch Zulaufstrecke von Norden, Anbindung an die Neusser Straße ANLAGE-NR.:

3.1.4

Lagepläne

1127-G6 A.xlsx / a3.1

AUFTRAGEBER:
Kölner Verkehrs-Betriebe AG
Scheidtweilerstraße 38
50933 Köln

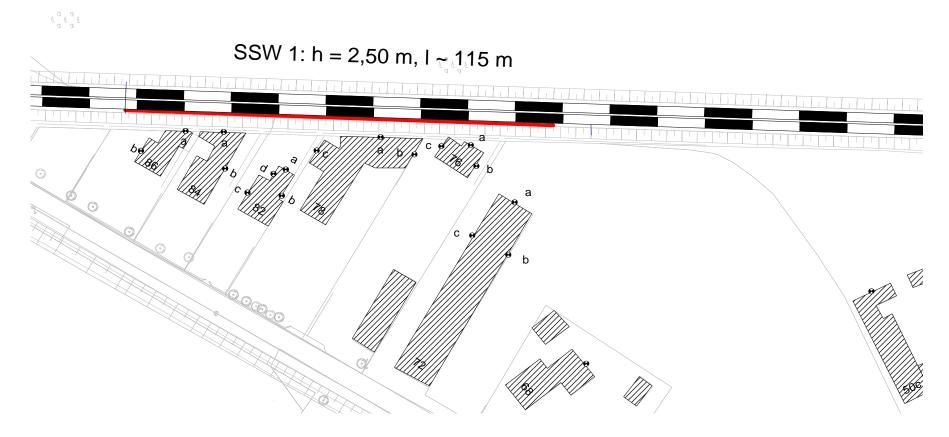
AUFTRAG-NR.:
S 02.1127.13
Beurteilungspegel durch den
Schienenverkehr auf der Zulaufstrecke

Bezeichnung			Peg	el Lr	Grei	nzwert	Differer	nzpegel	Anspruc	h auf SS	
•				Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht
				(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)
			EG	36	44	59	49	-23	-5	-	-
			1.OG	37	45	59	49	-22	-4	-	-
			2.OG	37	45	59	49	-22	-4	-	-
			3.OG	38	45	59	49	-21	-4	-	-
	739		4.OG	38	46	59	49	-21	-3	-	-
			5.OG	39	47	59	49	-20	-2	-	-
			6.OG	39	47	59	49	-20	-2	-	-
			7.OG	39	47	59	49	-20	-2	-	-
			8.OG	39	47	59	49	-20	-2	-	-
-			EG	42	50	59	49	-17	1	-	Х
		а	1.OG	43	50	59	49	-16	1	-	Х
	744		2.OG	43	50	59	49		1	-	х
	741		EG	38	45	59	49	-16 -21	-4	-	-
Neusser Str.		b	1.OG	39	46	59	49	-20	-3	-	-
			2.OG	40	47	59	49	-19	-2	-	-
-			EG	43	50	59	49	-16	1	-	Х
	790		1.OG	43	50	59	49	-16	1	-	х
			2.OG	43	50	59	49	-16	1	-	х
-			EG	35	42	59	49	-24	-7	-	-
	792		1.OG	36	43	59	49	-23	-6	-	_
			2.OG	36	44	59	49	-23	-5	_	_
-			EG	29	36	59	49	-30	-13	-	_
		а	1.OG	30	38	59	49	-29	-11	_	_
		-	2.OG	32	40	59	49	-27	-9	_	_
	794		EG	32	39	59	49	-27	-10	-	-
		b	1.OG	32	40	59	49	-27	-9	_	_
			2.OG	32	40	59	49	-27	-9	_	_
		а	EG	49	57	64	54	-15	3	-	Х
	?	b	EG	46	54	64	54	-18	0	-	-
	-	C	EG	41	49	64	54	-23	-5	-	-
-		а	EG	47	55	64	54	-17	1	-	Х
	??	b	EG	45	53	64	54	-19	-1	-	-
		C	EG	41	49	64	54	-23	-5	-	-
-		a	EG	43	51	64	54	-21	-3	-	_
	38a	b	EG	42	50	64	54	-22	-4	-	-
		C	EG	37	45	64	54	-27	-9	-	-
-		a	EG	43	51	64	54	-21	-3	-	_
	40b	b	EG	40	48	64	54	-24	-6	-	-
		C	EG	37	45	64	54	-27	-9	-	-
Simonskaul -	40c		EG	42	50	64	54	-22	-4	-	_
-	50c		EG	40	48	64	54	-24	-6	-	_
-	68		EG	36	44	64	54	-28	-10	-	_
-		а	EG	43	51	64	54	-21	-3	_	-
	72	b	EG	35	43	64	54	-29	-11	-	-
	. –	C	EG	38	46	64	54	-26	-8	-	-
-		a	EG	49	57	64	54	-15	3	_	Х
	76	b	EG	42	50	64	54	-22	-4	-	-
	, 5	C	EG	48	56	64	54	-16	2	-	Х
-		a	EG	50	58	64	54	-14	4	_	X
	78	b	EG	45	53	64	54	-1 4 -19	-1	-	-
	, 0	С	EG	48	56	64	54	-19 -16	2	_	- X
		U	_0	70	50	U -1	J-T	10			X

AUFTRAGGEBER:	AUFTRAG-NR.:	HW Weidenpesch	ANLAGE-NR.:	
Kölner Verkehrs-Betriebe AG	S 02.1127.13	Beurteilungspegel durch den	3.2.2	
Scheidtweilerstraße 38		Schienenverkehr auf der Zulaufstrecke		
50933 Köln				

Bezeichnung				Peg	el Lr	Grei	nzwert	Differer	nzpegel	Anspruc	h auf SS
				Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht
				(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)
		а	EG	47	55	64	54	-17	1	-	Х
		а	1.OG	46	54	64	54	-18	0	-	-
		b	EG	38	46	64	54	-26	-8	-	-
	82	D	1.OG	38	46	64	54	-26	-8	-	-
	02	_	EG	41	49	64	54	-23	-5	-	-
		С	1.OG	42	50	64	54	-22	-4	-	-
		4	EG	46	54	64	54	-18	0	-	-
Simonskaul -		d	1.OG	46	54	64	54	-18	0	-	-
Simonskaur			EG	50	58	64	54	-14	4	-	Х
	0.1	а	1.OG	49	57	64	54	-15	3	-	Х
	04	84	EG	41	49	64	54	-23	-5	-	-
		b	1.OG	42	50	64	54	-22	-4	-	-
		_	EG	50	58	64	54	-14	4	-	Х
	86	а	1.OG	49	57	64	54	-15	3	-	Х
	00	_	EG	47	55	64	54	-17	1	-	Х
		b	1.OG	47	55	64	54	-17	1	-	Х

AUFTRAGGEBER: Kölner Verkehrs-Betriebe AG Scheidtweilerstraße 38 50933 Köln
Kölner Verkehrs-Betriebe AG
Scheidtweilerstraße 38
50933 Köln


AUFTRAG-NR.: S 02.1127.13

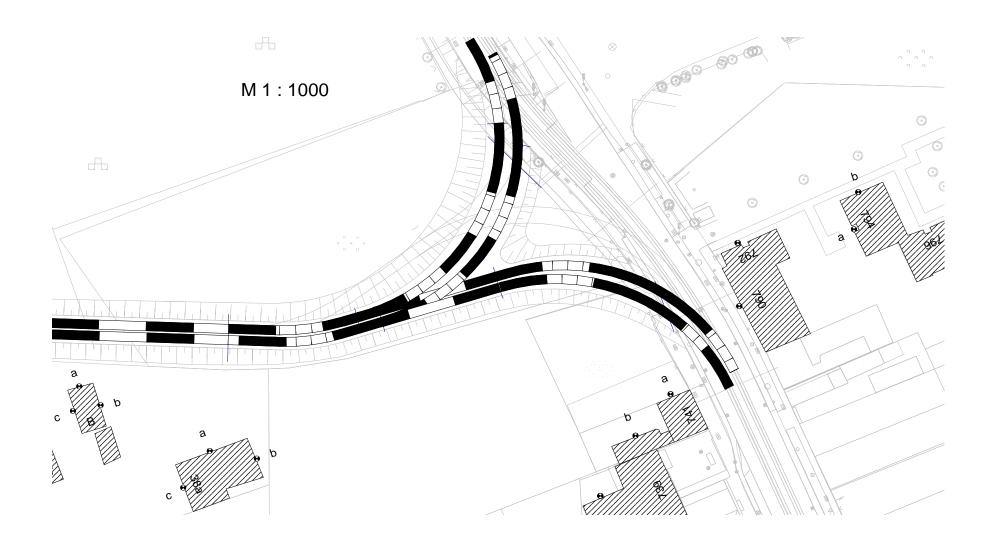
HW Weidenpesch Zulaufstrecke von Norden, Anschluss an die Neusser Straße Lage der Schallschutzwände Lagepläne

ANLAGE-NR.:

3.3.1

M 1:1000

50933 Köln


AUFTRAG-NR.: S 02.1127.13

HW Weidenpesch Zulaufstrecke von Norden, Anschluss an die Neusser Straße Lage der Schallschutzwände Lagepläne ANLAGE-NR.:

3.3.2

3.3.3

1127-G6 A.xlsx / a3.3

AUFTRAGEBER:
Kölner Verkehrs-Betriebe AG
Scheidtweilerstraße 38
50933 Köln

AUFTRAG-NR.:
S 02.1127.13

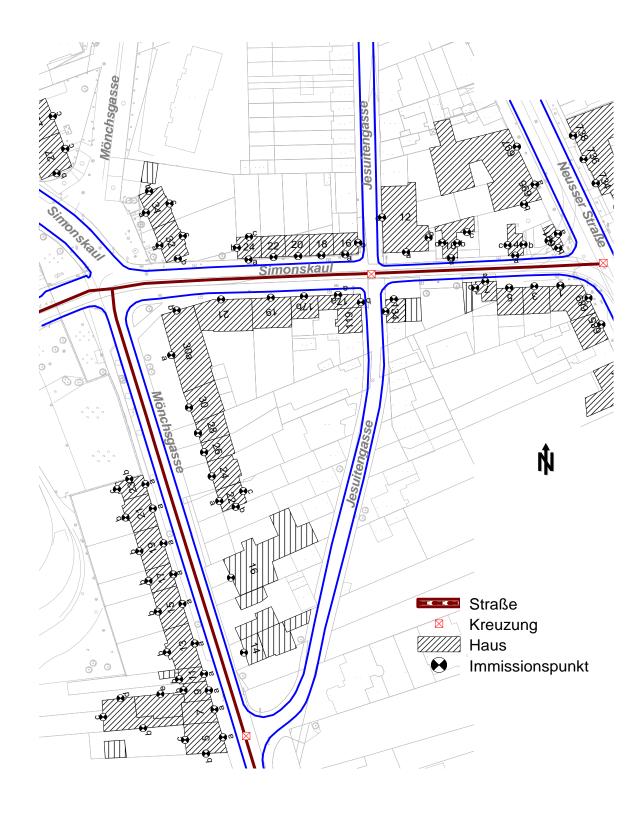
G-NR.:
HW Weidenpesch
7.13
Luftschallimmissionen durch den
Schienenverkehr auf der Zulaufstrecke
mit Schallschutzwand

ANLAGE-NR.:

3.4.1

Bezeichnung				Peg	el Lr	Grei	nzwert	Differer	nzpegel	Anspruc	h auf SS
				Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht
				(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)
			EG	36	44	59	49	-23	-5	-	-
			1.OG	37	45	59	49	-22	-4	-	-
			2.OG	37	45	59	49	-22	-4	-	-
			3.OG	38	45	59	49	-21	-4	-	-
	739		4.OG	38	46	59	49	-21	-3	-	-
			5.OG	39	47	59	49	-20	-2	-	-
			6.OG	39	47	59	49	-20	-2	-	-
			7.OG	39	47	59	49	-20	-2	-	-
			8.OG	39	47	59	49	-20	-2	-	-
•			EG	42	50	59	49	-17	1	-	Х
		а	1.OG	43	50	59	49	-16	1	-	х
	744		2.OG	43	50	59	49	-16	1	-	Х
	741		EG	38	45	59	49	-21	-4	-	-
Neusser Str.		b	1.OG	39	46	59	49	-20	-3	_	-
			2.OG	40	47	59	49	-19	-2	_	_
			EG	43	50	59	49	-16	1	_	Х
	790		1.OG	43	50	59	49	-16	1	_	X
	750		2.OG	43	50	59	49	-16	1	_	X
•			EG	35	42	59	49	-24	-7	 	
	792		1.OG	36	43	59	49	-23	-6		_
	132		2.OG	36	44	59	49	-23	-5 -5	_	-
			EG	29	36	59	49	-30	-13	-	-
		_					49 49			_	-
		а	1.OG	30	38	59 50		-29	-11	_	-
	794		2.OG	32	40	59	49 40	-27	-9	-	-
		L	EG	32	39	59	49	-27	-10	-	-
		b	1.OG	32	40	59	49	-27	-9	-	-
			2.OG	32	40	59	49	-27	-9	-	-
		a	EG	49	57	64	54	-15	3	-	Х
	Α	b	EG	46	54	64	54	-18	0_	-	-
		С	EG	41	49	64	54	-23	-5	-	-
	_	а	EG	47	55	64	54	-17	1	-	Χ
	В	b	EG	45	53	64	54	-19 -23	-1	-	-
		С	EG	41	49	64	54		-5	-	-
		а	EG	43	51	64	54	-21	-3	-	-
	38a	b	EG	42	50	64	54	-22	-4	-	-
		С	EG	37	45	64	54	-27	-9	-	-
		а	EG	43	51	64	54	-21	-3	_	-
	40b	b	EG	40	48	64	54	-24	-6	-	-
Simonskaul -		С	EG	37	45	64	54	-27	-9	-	-
Simonskau	40c		EG	42	50	64	54	-22	-4	-	-
	50c		EG	40	48	64	54	-24	-6	-	-
·	68		EG	35	43	64	54	-29	-11	-	-
		а	EG	38	46	64	54	-26	-8	-	-
	72	b	EG	35	43	64	54	-29	-11	-	-
		С	EG	34	42	64	54	-30	-12	-	-
		a	EG	38	46	64	54	-26	-8	-	-
	76	b	EG	37	45	64	54	-27	-9	-	-
		C	EG	38	46	64	54	-26	-8	-	-
		a	EG	40	48	64	54	-24	-6	-	-
	78	b	EG	36	44	64	54	-28	-10	-	-
	. 0	C	EG	36	44	64	54	-28	-10	-	-
		U	_	50		υŤ	J T	20	10	1	

AUFTRAGGEBER:	AUFTRAG-NR.:	HW Weidenpesch	ANLAGE-NR.:	
Kölner Verkehrs-Betriebe AG	S 02.1127.13	Luftschallimmissionen durch den	3.4.2	
Scheidtweilerstraße 38		Schienenverkehr auf der Zulaufstrecke		
50933 Köln		mit Schallschutzwand		


Bezeichnung				Peg	el Lr	Grei	nzwert	Differer	nzpegel	Anspruc	h auf SS
				Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht
				(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)
		а	EG	33	41	64	54	-31	-13	-	-
		а	1.OG	36	44	64	54	-28	-10	-	-
		b	EG	33	41	64	54	-31	-13	-	-
	82	U	1.OG	35	43	64	54	-29	-11	-	-
	02	С	EG	34	42	64	54	-30	-12	-	-
		C	1.OG	37	45	64	54	-27	-9	-	-
		d	EG	32	40	64	54	-32	-14	-	-
Simonskaul -		u	1.OG	37	45	64	54	-27	-9	-	-
Simonskaur		а	EG	39	47	64	54	-25	-7	-	-
	84	a	1.OG	46	54	64	54	-18	0	-	-
	04	b	EG	32	40	64	54	-32	-14	-	-
_		D	1.OG	36	44	64	54	-28	-10	-	-
		а	EG	40	48	64	54	-24	-6	-	-
	98	а	1.OG	46	54	64	54	-18	0	-	-
	00	36 b	EG	44	52	64	54	-20	-2	-	-
		D	1.OG	44	52	64	54	-20	-2	-	-

AUFTRAG-NR.: S 02.1127.13

HW Weidenpesch

Lageplan Simonskaul / Mönchsgasse

ANLAGE-NR.: 4.1

AUFTRAG-NR.:

HW Weidenpesch Immissionsänderung des Kfz-Verkehrs aufgrund der zusätzlichen Fahrten (Simonskaul / Mönchsgasse) ANLAGE-NR.: 4.2.1

				R0		R1		enzpegel		uch auf
Immissionsort		Etage	Peg	jel Lr	Peg	el Lr	$\Delta L_r = L_{r,}$	STR1 - L _{r,STR0}	Schall	schutz
			Tag (dBA)	Nacht (dBA)	Tag (dBA)	Nacht (dBA)	Tag (dBA)	Nacht (dBA)	Tag	Nacht
		EG	63.1	57	63.2	57.5	0.1	0.5	_	_
		a 1.0G	63.1	57.1	63.2	57.5	0.1	0.4	_	_
Jesuitengasse	134	. EG	58.5	52.4	58.6	52.8	0.1	0.4		
		b 1.OG	58.9	52.8	58.9	53.2	0	0.4	_	_
		EG	64.5	58.1	64.5	58.5	0	0.4	_	_
		a 1.0G	64.1	57.7	64.1	58.1	0	0.4	_	
		2.OG	63.5	57.7 57.1	63.5	57.5	0	0.4	-	_
	11	EG	34.6	28.4	34.7	28.7	0.1	0.4	_	-
		b 1.0G	36.4	30.1	36.4	30.5	0.1	0.3	_	_
		2.OG	42	35.7	42			0.4	_	_
_		2.0G EG		57.2	63.6	36.1	0	0.4	-	
			63.6			57.6			-	-
		a 1.0G	63.2	56.9	63.3	57.3	0.1	0.4	-	-
	13	2.OG	62.6	56.2	62.6	56.6	0	0.4	-	-
		EG	34.1	28.2	34.1	28.5	0	0.3	-	-
		b 1.0G	36	29.9	36	30.2	0	0.3	-	-
_	- 4.4	2.OG	40.4	34.1	40.4	34.5	0	0.4	-	-
_	14		64.4	58	64.4	58.4	0	0.4	-	-
		a EG	63.5	57.2	63.6	57.5	0.1	0.3	-	-
	15	ຶ 1.0G	63.2	56.8	63.2	57.2	0	0.4	-	-
		b EG	36.8	30.7	36.9	31.1	0.1	0.4	-	-
_		1.OG	42.1	35.8	42.1	36.2	0	0.4	-	-
_	16		61.9	55.5	61.9	55.9	0	0.4	-	-
		a EG	62.5	56.1	62.5	56.5	0	0.4	-	-
	17	1.OG	62.1	55.7	62.1	56.1	0	0.4	-	-
	••	b EG	35.7	29.6	35.7	30	0	0.4	-	-
_		1.OG	41.2	35	41.2	35.3	0	0.3	-	-
Mönchsgasse		a EG	62.4	56.1	62.4	56.4	0	0.3	-	-
	19	1.OG	62	55.6	62	56	0	0.4	-	-
	10	b EG	35.5	29.4	35.6	29.7	0.1	0.3	-	-
_		1.OG	41.2	34.9	41.2	35.3	0	0.4	-	-
		a EG	61.4	55	61.4	55.4	0	0.4	-	-
	21	^a 1.0G	61	54.6	61	55	0	0.4	-	-
	21	b EG	34.5	28.7	34.6	29	0.1	0.3	-	-
_		1.OG	40.1	34	40.1	34.3	0	0.3	-	-
		a EG	59.1	52.8	59.2	53.2	0.1	0.4	-	-
		1.OG	59.6	53.2	59.6	53.6	0	0.4	-	-
	22	b EG	54.4	48.1	54.5	48.4	0.1	0.3	-	-
	22	1.OG	55.2	48.9	55.3	49.3	0.1	0.4	-	-
		c EG	38.8	32.5	38.8	32.9	0	0.4	-	-
_		1.OG	41.8	35.5	41.8	35.9	0	0.4	-	-
_		EG	61.4	55.1	61.5	55.5	0.1	0.4	-	-
		a 1.OG	61	54.7	61.1	55.1	0.1	0.4	-	-
	23	ь EG	56.2	49.9	56.2	50.2	0	0.3	-	-
	23	b 1.0G	56.3	50	56.3	50.3	0	0.3		_
		EG	35.2	29.6	35.2	29.9	0	0.3	-	-
		c 1.OG	40.9	34.8	40.9	35.2	0	0.4	-	-
_		EG	58	51.6	58	52	0	0.4	-	-
	24	1.OG	58.5	52.1	58.5	52.5	0	0.4	-	-
		2.OG	58.4	52.1	58.4	52.4	0	0.3	_	_
		EG	57.9	51.5	57.9	51.9	0	0.4	-	

AUFTRAGGEBER:
Kölner Verkehrs-Betriebe AG
Scheidtweilerstraße 38
50933 Köln

AUFTRAG-NR.:
S 02.1127.13

HW Weidenpesch Immissionsänderung des Kfz-Verkehrs aufgrund der zusätzlichen Fahrten (Simonskaul / Mönchsgasse) **ANLAGE-NR.:** 4.2.2

Immissionsort		Etago		R0 jel Lr		R1 el Lr		enzpegel	_	uch auf schutz
IIIIIIIISSIOIISOIT		Etage	_	-	_	-		STR1 - L _{r,STR0}		_
			Tag (dBA)	Nacht (dBA)	Tag (dBA)	Nacht (dBA)	Tag (dBA)	Nacht (dBA)	Tag	Nacht
	26	1.OG	58.3	51.9	58.3	52.3	0	0.4	-	_
		2.OG	58.2	51.9	58.3	52.3	0.1	0.4	_	-
		EG	41.9	36.2	41.9	36.5	0	0.3	-	-
		a 1.OG	42.4	36.7	42.4	37	0	0.3	-	-
		2.OG	44.1	38.4	44.1	38.7	0	0.3	-	-
		EG	48.7	42.7	48.7	43	0	0.3	-	-
	27	b 1.OG	49.5	43.5	49.5	43.9	0	0.4	-	-
		2.OG	50.4	44.4	50.4	44.7	0	0.3	-	-
		EG	45.6	39.4	45.6	39.7	0	0.3	-	-
		c 1.OG	46.4	40.2	46.4	40.6	0	0.4	_	-
		2.OG	47.5	41.3	47.5	41.7	0	0.4	-	-
•		EG	57.8	51.4	57.8	51.8	0	0.4	-	_
	28	1.OG	58.1	51.7	58.1	52.1	0	0.4	_	_
		2.OG	58.1	51.7	58.1	52.1	0	0.4	_	_
		EG	35.5	30.5	35.5	30.8	0	0.3	_	_
		a 1.OG	34.8	30.1	34.9	30.3	0.1	0.2	_	_
		2.OG	38.3	32.9	38.3	33.2	0	0.3	_	_
		EG	31.6	25.5	31.6	25.9	Ŏ	0.4	-	_
	29	b 1.0G	27.5	21.4	27.6	21.8	0.1	0.4	_	_
	20	2.OG	33.9	27.8	33.9	28.1	0	0.3	_	_
		EG	43	36.8	43	37.1	0	0.3	_	_
		c 1.0G	43.7	37.5	43.7	37.8	0	0.3		
		2.OG	44.7	38.6	44.8	38.9	0.1	0.3	_	_
Mönchsgasse		EG	57.8	51.5	57.8	51.8	0.1	0.3	_	
Worldingasse	30	1.0G	58	51.7	58	52.1	0	0.4	_	_
	50	2.OG	58	51.6	58	52	0	0.4	_	_
•		EG	58.1	51.8	58.2	52.2	0.1	0.4	_	
		a 1.0G	58.4	52.1	58.4	52.5	0.1	0.4	_	_
		2.OG	58.2	52	58.3	52.3	0.1	0.4		
	30a	EG	61.5	55.4	61.5	55.7	0.1	0.3		
		b 1.0G	61.4	55.2	61.4	55.6	0	0.4	_	_
		2.OG	60.9	54.8	61	55.2	0.1	0.4	_	_
,		EG	57.9	51.8	57.9	52.1	0.1	0.4	_	
		a 1.0G	57.9	51.8	58	52.1	0.1	0.3	_	_
		L EG	62.7	56.6	62.8	56.9	0.1	0.4		
	32	b 1.0G	62.5	56.4	62.6	56.8	0.1	0.3	_	_
		EG	55.1	49	55.1	49.3	0.1	0.4		
		c 1.0G	55.8	49.7	55.9	50.1	0.1	0.3	_	-
		1.0G	52.9	46.9	53	47.2		0.4	-	-
		a					0.1 0	0.3	-	-
		" 1.0G	54.1	48.1	54.1	48.4				<u> </u>
	34	b EG	33	28.3	33	28.5	0	0.2] -	_
		1.0G	39	32.9	39 50.2	33.2	0	0.3		_
		c EG	50.1	44 45.5	50.2	44.3	0.1	0.3	_	-
		1.0G	51.6	45.5	51.7	45.8	0.1	0.3	-	-
		EG 1.00	64.2	57.8	64.2	58.2	0	0.4	-	-
	5	a 1.0G	63.7	57.3	63.7	57.7 57.	0	0.4	_	-
		^a 2.0G	63	56.7	63.1	57 56.2	0.1	0.3	_	-
		3.OG	62.3	55.9	62.3	56.3	0	0.4	-	-
		EG 4.00	56.7	50.3	56.7	50.7	0	0.4	-	-
		_h 1.OG	57	50.6	57	51	0	0.4	l -	-

AUFTRAG-NR.:

HW Weidenpesch Immissionsänderung des Kfz-Verkehrs aufgrund der zusätzlichen Fahrten (Simonskaul / Mönchsgasse) ANLAGE-NR.: 4.2.3

					R0		R1		enzpegel		uch auf
Immissionsort		Etaç	ge	Peg	el Lr	Peg	el Lr	$\Delta L_r = L_{r,}$	STR1 - L _{r,STR0}	Schall	schutz
				Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht
				(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)		
		2.0		56.9	50.5	56.9	50.9	0	0.4	-	-
	5	3.C)G	56.7	50.4	56.8	50.7	0.1	0.3	-	_
	3	EG		36	29.6	36	30	0	0.4	-	-
		c 1.0)G	35	28.8	35	29.1	0	0.3	-	-
		2.0)G	37.6	31.4	37.6	31.7	0	0.3	-	-
_		3.0)G	42.3	36	42.3	36.4	0	0.4	-	-
_		, EG		64.2	57.9	64.2	58.2	0	0.3	-	-
Mänahagaaa		aC)G	63.8	57.4	63.8	57.8	0	0.4	-	-
Mönchsgasse	7	b EG		47.2	40.9	47.3	41.3	0.1	0.4	-	-
	7	c EG		36.1	30	36.1	30.3	0	0.3	-	-
		d EG		37.2	31.1	37.2	31.5	0	0.4	-	-
		e EG		37.3	31.1	37.3	31.5	0	0.4	-	-
_		EG		64.3	58	64.4	58.3	0.1	0.3	_	_
		a 1.0		64	57.6	64	58	0	0.4	_	_
		2.0		63.3	56.9	63.3	57.3	0	0.4	_	_
	9	EG		34.8	28.4	34.8	28.8	0	0.4	_	-
		b 1.0		36.8	30.5	36.8	30.8	0	0.3	_	_
		2.0		42.5	36.2	42.5	36.5	0	0.3	_	_
		EG		51.7	45.7	51.8	46.2	0.1	0.5	_	
) OG	52	46	52	46.5	0	0.5		
	685		DG DG	52	45.9	52	46.4	0	0.5	_	_
		3.0		51.9	45.9	52	46.4	0.1	0.5	_	_
				56.7		56.7			0.6	-	-
		EG			50.6		51.2	0		-	-
	689	1.0		56.4	50.3	56.4	50.8	0	0.5	-	-
		2.0		55.9	49.9	55.9	50.4	0	0.5	-	-
_		3.0		55.4	49.4	55.4	49.9	0	0.5	-	-
		a EG		55	49	55.1	49.5	0.1	0.5	-	-
		^a 1.0		55.1	49	55.1	49.5	0	0.5	-	-
	691	b EG		63.9	57.8	63.9	58.3	0	0.5	-	-
		1.0)G	63.2	57.1	63.2	57.6	0	0.5	-	-
Neusser Str.		c EG		61.1	55.1	61.1	55.6	0	0.5	-	-
-		1.0		61	54.9	61	55.5	0	0.6	-	-
		E		45.8	39.7	45.8	40.3	0	0.6	-	-
			OG	47.3	41.2	47.3	41.7	0	0.5	-	-
		2.	OG	47.9	41.8	47.9	42.3	0	0.5	-	-
	695	3.	OG	48.4	42.3	48.4	42.8	0	0.5	-	-
	095	E	G	54.1	48.1	54.2	48.6	0.1	0.5	-	-
		h 1.	OG	55.1	49.1	55.1	49.6	0	0.5	-	-
		b 2.	OG	54.8	48.7	54.8	49.2	0	0.5	-	-
		3.	OG	55.7	49.6	55.7	50.1	0	0.5	-	-
_		Ε(G	42	36	42.1	36.5	0.1	0.5	-	-
	607		OG	43.1	37	43.1	37.5	0	0.5	_	-
	697		OG	44.1	38.1	44.1	38.6	0	0.5	_	-
			OG	45.2	39.2	45.3	39.7	0.1	0.5	_	_

AUFTRAG-NR.:

HW Weidenpesch Immissionsänderung des Kfz-Verkehrs aufgrund der zusätzlichen Fahrten (Simonskaul / Mönchsgasse) ANLAGE-NR.: 4.2.4

Leave to all and a set		E4		R0		R1		enzpegel	_	uch auf
Immissionsort		Etage	_	el Lr		el Lr		STR1 - L _{r,STR0}		schutz
			Tag (dBA)	Nacht (dBA)	Tag (dBA)	Nacht (dBA)	Tag (dBA)	Nacht (dBA)	Tag	Nacht
		EG	50	43.9	50	44.4	0	0.5	-	-
	704	1.OG	51.3	45.3	51.4	45.8	0.1	0.5	-	-
	724	2.OG	51.9	45.9	52	46.4	0.1	0.5	-	-
		3.OG	52.1	46.1	52.2	46.6	0.1	0.5	-	_
-		EG	53.5	47.4	53.5	47.9	0	0.5	_	_
		1.OG	54.2	48.1	54.2	48.6	0	0.5	_	_
	726	2.OG	54.3	48.3	54.4	48.8	0.1	0.5	_	_
		3.OG	54.4	48.4	54.4	48.8	0	0.4	_	_
_		EG	55.6	49.5	55.6	50	0	0.5	_	_
		1.OG	56	49.9	56	50.4	0	0.5	_	
	728	2.OG	56.1	50.1	56.2	50.4	0.1	0.5	_	_
			56		56.1			0.5	-	_
=		3.OG		50		50.5	0.1		-	-
		EG	55.2	49.1	55.2	49.6	0	0.5	-	-
	730	1.0G	55.7	49.7	55.7	50.2	0	0.5	-	-
		2.OG	56	49.9	56	50.5	0	0.6	-	-
Neusser Str		3.OG	56	50	56.1	50.5	0.1	0.5	-	-
		EG	53.6	47.6	53.6	48.1	0	0.5	-	-
	732	1.OG	54.6	48.6	54.7	49.1	0.1	0.5	-	-
	702	2.OG	54.8	48.8	54.9	49.3	0.1	0.5	-	-
		3.OG	55.1	49.1	55.1	49.6	0	0.5	-	-
		EG	50.7	44.6	50.7	45.1	0	0.5	-	-
	70.4	1.0G	52.2	46.2	52.3	46.7	0.1	0.5	-	-
	734	2.OG	52.6	46.6	52.7	47.1	0.1	0.5	-	_
		3.OG	53	47	53.1	47.5	0.1	0.5	_	_
-		EG	46.7	40.6	46.7	41.1	0	0.5	_	_
		1.0G	48	42	48.1	42.5	0.1	0.5	_	_
	736	2.OG	49.1	43.1	49.2	43.6	0.1	0.5	_	_
		3.OG	49.6	43.5	49.6	44	0	0.5	_	_
-		EG	44.9	38.8	44.9	39.3	0	0.5	_	
		1.OG	46	39.9	46	40.4		0.5	_	
	738						0		-	-
		2.OG	47.1	41	47.1	41.5	0	0.5	-	-
		3.OG	48	42	48	42.5	0	0.5	-	-
		EG 4.00	63.3	57.3	63.4	57.8	0.1	0.5	-	-
	1	1.0G	62.8	56.7	62.8	57.3	0	0.6	-	-
		2.OG	62	56	62.1	56.5	0.1	0.5	-	-
_		3.OG	61.3	55.2	61.3	55.7	0	0.5	-	-
_	3	EG	63.6	57.5	63.6	58.1	0	0.6	-	-
		a EG	66	59.9	66	60.4	0	0.5	-	-
		^a 1.0G	64.9	58.9	64.9	59.4	0	0.5	-	-
Simonskaul	1	b EG	60.9	54.9	61	55.4	0.1	0.5	-	-
JIIIOHSKAUI	4	^ນ 1.OG	60.7	54.7	60.7	55.2	0	0.5	-	_
		EG	60.7	54.6	60.7	55.2	0	0.6	-	-
		c 1.0G	60.5	54.5	60.5	55	0	0.5	-	_
_		EG	63.5	57.5	63.6	58	0.1	0.5	_	-
	5	1.OG	63.2	57.1	63.2	57.6	0	0.5	_	_
	=	2.OG	62.4	56.4	62.5	56.9	0.1	0.5	_	_
_			64.6	58.5	64.6	59	0	0.5	_	_
_	7	a EG								

AUFTRAG-NR.:

HW Weidenpesch Immissionsänderung des Kfz-Verkehrs aufgrund der zusätzlichen Fahrten (Simonskaul / Mönchsgasse) ANLAGE-NR.: 4.2.5

				R0		R1		enzpegel	I -	uch auf
Immissionsort		Etage	Peg	el Lr	_	el Lr		STR1 - L _{r,STR0}		schutz
			Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht
			(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)		
		a EG	65.8	59.8	65.9	60.3	0.1	0.5	-	-
		1.OG	64.8	58.8	64.8	59.3	0	0.5 0.5	-	-
		b EG	60.9	54.8	60.9	55.3	0		-	-
	10	1.OG	60.8	54.8	60.9	55.3	0.1	0.5	_	-
	10	c EG	59.3	53.3	59.4	53.8	0.1	0.5	-	-
ı		1.OG	59.5	53.5	59.5	54	0	0.5	_	_
		d EG	58.6	52.6	58.7	53.1	0.1	0.5	-	-
		^u 1.OG	58.4	52.4	58.4	52.9	0	0.5	-	-
•		EG	64.1	58	64.1	58.5	0	0.5	-	-
		a 1.OG	63.8	57.7	63.8	58.2	0	0.5	_	-
	4.0	FG	57	51	57	51.5	0	0.5	-	-
	12	b 1.OG	56.9	50.8	56.9	51.3	0	0.5	_	_
		FG	55	48.9	55	49.3	0	0.4	_	_
		c 1.0G	55.5	49.5	55.6	49.9	0.1	0.4	_	_
•		EG	65.3	59.2	65.4	59.6	0.1	0.4	_	_
		a 1.0G	64.9	58.8	65	59.2	0.1	0.4	_	_
	16						0.1		_	-
		b EG	59	52.9	59 50.4	53.3		0.4	-	-
		1.0G	59	52.9	59.1	53.4	0.1	0.5	-	-
		a EG	65.3	59.2	65.4	59.6	0.1	0.4	-	-
	17a	1.OG	65	58.9	65	59.2	0	0.3	-	-
		b EG	59.7	53.7	59.8	54.1	0.1	0.4	-	-
<u>.</u>		1.OG	59.8	53.7	59.8	54.1	0	0.4	-	-
	17b	EG	65.5	59.4	65.5	59.7	0	0.3	-	-
Simonskaul -	170	1.OG	65.2	59	65.2	59.4	0	0.4	-	-
Simonskau	18	EG	65.5	59.4	65.6	59.8	0.1	0.4	-	-
	10	1.OG	65.2	59.1	65.2	59.4	0	0.3	-	-
•	10	EG	64.5	58.3	64.5	58.7	0	0.4	-	-
	19	1.OG	64.1	58	64.1	58.3	0	0.3	_	-
•	00	EG	65.6	59.5	65.6	59.8	0	0.3	-	-
	20	1.OG	65.3	59.1	65.3	59.5	0	0.4	_	_
•		EG	64.2	58.1	64.2	58.4	0	0.3	_	-
	21	1.OG	63.8	57.7	63.8	58	0	0.3	_	_
-		EG	65.6	59.5	65.6	59.8	0	0.3	_	_
	22	1.0G	65.3	59.1	65.3	59.5	0	0.4	_	_
•		EG	64.9	58.8	64.9	59.1	0	0.4		-
		a 1.0G	64.5	58.4	64.5	58.7	0	0.3	_	_
									_	_
	24	b EG	59.6	53.5	59.6	53.8	0	0.3	_	_
		1.0G	59.8	53.6	59.8	54	0	0.4	-	-
		c EG	37.3	31.2	37.3	31.5	0	0.3	_	-
		1.OG	43.5	37.4	43.6	37.8	0.1	0.4	-	-
	34	EG	36.5	30.4	36.5	30.8	0	0.4	-	-
		1.0G	42.1	36	42.1	36.4	0	0.4	-	-
		a EG	26.3	20.1	26.3	20.4	0	0.3	-	-
		1.OG	35	28.9	35.1	29.2	0.1	0.3	-	-
	36	b EG	38.6	32.5	38.7	32.8	0.1	0.3	-	-
1	30	⁰ 1.OG	40.5	34.3	40.5	34.6	0	0.3	_	-
		EG	38.6	32.4	38.6	32.8	0	0.4	_	-
		c 1.0G	40	33.8	40	34.1	0	0.3	_	-

AUFTRAG-NR.:

HW Weidenpesch Immissionsänderung des Kfz-Verkehrs aufgrund der zusätzlichen Fahrten (Simonskaul / Mönchsgasse) ANLAGE-NR.: 4.2.6

,				R0		R1		enzpegel		uch auf
Immissionsort		Etage	_	el Lr	_	el Lr		STR1 - L _{r,STR0}		schutz
			Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht
			(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)		
		a EG	24	17.8	24.1	18.2	0.1	0.4	-	-
		^a 1.0G	29.9	23.7	30	24.1	0.1	0.4	-	-
	38	b EG	34.9	28.7	34.9	29	0	0.3	-	-
	00	1.OG	38.3	32.1	38.4	32.5	0.1	0.4	-	-
		c EG	30.9	24.7	30.9	25	0	0.3	-	-
_		1.0G	37	30.8	37	31.2	0	0.4	-	-
		a EG	46.1	40	46.1	40.4	0	0.4	-	-
		^a 1.0G	46.7	40.6	46.7	41	0	0.4	-	-
		լ EG	49.5	43.7	49.5	44	0	0.3	-	-
	45	b 1.0G	50.4	44.7	50.4	45	0	0.3	-	-
	45	EG	45.8	40.2	45.8	40.5	0	0.3	-	-
		c 1.0G	46.9	41.5	47	41.7	0.1	0.2	_	_
		FG	32.6	26.6	32.6	26.9	0	0.3	-	_
		d 1.OG	40.7	34.7	40.7	35	0	0.3	_	_
-		EG	44.1	38	44.1	38.4	0	0.4		
		a 1.0G	44.7	38.7	44.8	39		0.4	_	_
				• • • • • • • • • • • • • • • • • • • •			0.1		_	_
	47	b EG	31.8	25.7	31.8	26.1	0	0.4	-	-
		1.0G	41.8	35.8	41.9	36.1	0.1	0.3	-	-
		c EG	44.3	38.5	44.3	38.8	0	0.3	-	-
		1.OG	45.2	39.5	45.3	39.8	0.1	0.3	-	-
		a EG	42.5	36.5	42.6	36.8	0.1	0.3	-	-
		1.OG	43.7	37.7	43.8	38	0.1	0.3	_	_
	49	b EG	32.7	26.6	32.7	26.9	0	0.3	-	-
		FG	41.9	35.9	41.9	36.2	0	0.3	-	-
Simonskaul		c 1.OG	42.9	36.9	42.9	37.3	0	0.4	-	-
-		_ EG	42.5	36.4	42.5	36.7	0	0.3	-	-
		a 1.OG	44.5	38.4	44.5	38.7	0	0.3	-	-
	_,	FG	33.4	27.3	33.4	27.6	0	0.3	-	-
	51	b 1.OG	41.9	35.8	41.9	36.1	0	0.3	_	_
		EG	36.2	30	36.2	30.4	0	0.4	_	-
		c 1.0G	41.8	35.7	41.9	36.1	0.1	0.4	_	_
-		_ EG	42.1	36	42.2	36.4	0.1	0.4	_	
		9	44.2	38	44.2	38.4	0.1	0.4	_	_
		1.0G	•							
	53	b EG	36.2	30.1	36.3	30.5	0.1	0.4	-	_
		1.0G	43.1	37	43.1	37.3	0	0.3	_	-
		c EG	38.5	32.3	38.5	32.7	0	0.4	_	_
-		1.0G	42.1	36	42.1	36.4	0	0.4	-	-
		a EG	40.5	34.3	40.5	34.7	0	0.4	-	-
		1.OG	41.5	35.4	41.6	35.7	0.1	0.3	-	-
	55	b EG	39.7	33.6	39.7	33.9	0	0.3	-	-
	30	1.OG	42.2	36	42.2	36.3	0	0.3	-	-
		c EG	36.6	30.3	36.6	30.7	0	0.4	-	-
		1.OG	39.2	32.9	39.2	33.3	0	0.4	-	
-	-	g EG	39.9	33.8	40	34.2	0.1	0.4	-	_
		a 1.OG	41	34.8	41	35.2	0	0.4	-	_
		. EG	34.1	27.9	34.1	28.3	0	0.4	-	-
	57	b 1.OG	37.8	31.6	37.8	31.9	0	0.3	_	_
		FG	33.6	27.5	33.6	27.8	0	0.3	-	_
			35.8	29.6	35.8	30	0	0.4		
		1.OG	חויר.	/					_	

1127-G6 A.xlsx / a4.2

I.B.U. GmbH, Essen

AUFTRAG-NR.:

HW Weidenpesch Immissionsänderung des Kfz-Verkehrs aufgrund der zusätzlichen Fahrten (Simonskaul / Mönchsgasse) ANLAGE-NR.: 4.2.7

				STR0		STR1		Differenzpegel		Anspruch auf	
Immissionsort		Etage	Peg	Pegel Lr		Pegel Lr		$\Delta L_r = L_{r,STR1} - L_{r,STR0}$		Schallschutz	
			Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nach	
			(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)			
-		^u 1.0G	39	32.8	39	33.2	0	0.4	-	-	
	59	b EG	31.3	25.1	31.3	25.5	0	0.4	-	-	
		1.OG	38.8	32.6	38.8	32.9	0	0.3	-	_	
		c EG	35.3	29.1	35.3	29.4	0	0.3	-	_	
		1.OG	38.2	32	38.2	32.4	0	0.4	-	_	
	61	a EG	37.2	31.1	37.3	31.4	0.1	0.3	-	-	
		^a 1.0G	38.9	32.7	38.9	33	0	0.3	_	_	
		b EG	28.7	22.7	28.7	23	0	0.3	-	-	
Simonskaul -		1.OG	33	26.9	33	27.3	0	0.4	-	-	
		c EG	36.7	30.5	36.7	30.9	0	0.4	-	-	
		1.OG	37.8	31.6	37.8	32	0	0.4	-	-	
	63	g EG	36.1	29.9	36.1	30.3	0	0.4	-	_	
		a 1.0G	36.8	30.6	36.8	31	0	0.4		_	
		լ EG	30	23.9	30	24.2	0	0.3	-	-	
		b 1.0G	37.5	31.3	37.5	31.6	0	0.3	-	_	
		EG	29.3	23	29.3	23.4	0	0.4	-	-	
		c 1.0G	36.9	30.7	37	31	0.1	0.3	-	_	
		EG	35.9	29.7	35.9	30.1	0	0.4	-	-	
	65	a 1.0G	36.4	30.3	36.5	30.6	0.1	0.3	_	_	
		FG	28.8	22.6	28.8	22.9	0	0.3	-	-	
		b 1.0G	34.4	28.2	34.4	28.5	0	0.3	_	_	
		FG	29.8	23.5	29.8	23.9	0	0.4	-	- -	
		c 1.0G	34.8	28.6	34.8	28.9	0	0.3	_	_	
	67	₋ EG	35.1	28.9	35.1	29.3	0	0.4	_	_	
		a 1.0G	36.2	30	36.2	30.4	0	0.4	_	_	
		FG	29.8	23.6	29.8	24	Ō	0.4	_		
		b 1.0G	36.4	30.1	36.4	30.5	0	0.4	_	_	
		₋ EG	25.2	19	25.2	19.4	0	0.4	-	_	
		c 1.0G	30.3	24.1	30.3	24.5	0	0.4	_	_	
=		EG	35	28.9	35.1	29.2	0.1	0.3	_	_	
-	69	a 1.0G	36.1	30	36.1	30.3	0.1	0.3			
		L EG	26.3	20.1	26.3	20.5	0	0.4			
		b 1.0G	33	26.8	33	27.1	0	0.4	l -		
		EG	25.9	19.8	25.9	20.1	0	0.3		ļ	
		c 1.0G	25.9 31.6	25.4	31.6	25.8	0	0.3] -	_	
		EG	33.4	27.2	33.4	27.6	0	0.4	-	-	
	71	a 1.0G		28.5	34.7			0.4	-	_	
			34.6	•		28.8	0.1		ļ		
		b EG	27.3	21.1	27.3	21.5	0	0.4	-	_	
		1.OG	35.2	29	35.2	29.3	0	0.3	_	_ 	
		c EG	28.4	22.1	28.4	22.5	0	0.4	_	_	
		1.0G	34.4	28.2	34.5	28.5	0.1	0.3	-	-	
	73	a EG	32.9	26.8	33	27.1	0.1	0.3	-	-	
		1.OG	34.2	28.1	34.3	28.4	0.1	0.3		-	
		b EG	32.3	26.1	32.3	26.4	0	0.3	_	-	
		1.OG	35.6	29.4	35.6	29.7	0	0.3	-	-	
	75	a EG	27.4	21.2	27.4	21.5	0	0.3	-	-	
	-	^a 1.0G	34.5	28.3	34.5	28.6	0	0.3	-	-	

AUFTRAG-NR.:

HW Weidenpesch Immissionsänderung des Kfz-Verkehrs aufgrund der zusätzlichen Fahrten (Simonskaul / Mönchsgasse) ANLAGE-NR.: 4.2.8

				STR0		STR1		Differenzpegel		Anspruch auf	
Immissionsort	I		Etage	Pegel Lr		Pegel Lr		$\Delta L_r = L_{r,STR1} - L_{r,STR0}$		Schallschutz	
				Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht
				(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)		
Simonskaul	75	b	EG	33.4	27.1	33.4	27.4	0	0.3	-	-
			1.0G	34.8	28.6	34.8	28.9	0	0.3	-	-
	77		EG	32	25.7	32	26	0	0.3	-	-
			1.0G	33.2	26.9	33.2	27.3	0	0.4	-	-
	Gewerbe	а	EG	35.6	29.4	35.7	29.8	0.1	0.4	-	-
			1.0G	36.6	30.4	36.6	30.8	0	0.4	-	-
		b	EG	36.4	30.2	36.4	30.6	0	0.4	-	-
			1.0G	37	30.8	37	31.2	0	0.4	-	-
		С	EG	31.8	25.5	31.8	25.9	0	0.4	-	-
			1.0G	36.5	30.4	36.6	30.7	0.1	0.3	-	-
		d	EG	26.2	20	26.2	20.3	0	0.3	-	-
			1.0G	36.1	29.9	36.2	30.3	0.1	0.4	-	-